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ABSTRACT: Earlier results on algebraic criteria for dissipative 

systems are extended to a wider class of supply rates.  

1. Introduction 

The property of being a dissipative system is always relative to some specified energy input 

function. At one extreme, we can define input-output dissipativeness via the inequality 

𝐸(0, 𝑢, 𝑦, 𝑡0, 𝑡1) ≥ 0 

for all 𝑢 and all 𝑡1 ≥ 𝑡0, where 𝐸(𝑥0, 𝑢, 𝑦, 𝑡0, 𝑡1) is the energy input over the time interval 

[𝑡0, 𝑡1) resulting from initial state 𝑥0 and input 𝑢, where 𝑦 is the system output. It turns out – 

see section 2 – that one can get some results with only the mildest constraints on the energy 

function 𝐸. At this level of abstraction, though, the results are not particularly helpful in 

terms of ease of calculation. 

We get stronger results with special forms of the function 𝐸. In particular, there are known 

algebraic criteria [1, 3] when 𝐸 is the integral 

𝐸(𝑥0, 𝑢, 𝑦, 𝑡0, 𝑡1) = ∫ (𝑦(𝑡)𝑇𝑄𝑦(𝑡) + 2𝑦(𝑡)𝑇𝑆𝑢(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡))
𝑡1

𝑡0

𝑑𝑡 

and 𝑄, 𝑆, and 𝑅 are constant matrices. 

In the present paper, we want to extend this to the case where the integrand is not necessarily 

a quadratic function of the output. That is, we look at the case 

          𝐸(𝑥0, 𝑢, 𝑥, 𝑡0, 𝑡1) = ∫ (𝑞(𝑥(𝑡)) + 2𝑠(𝑥(𝑡))𝑇𝑢(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑥)𝑢(𝑡))
𝑡1

𝑡0
𝑑𝑡 (1) 

where 𝑞(∙) and 𝑠(∙) are more arbitrary nonlinear functions of the state. The integrand 

continues to be quadratic in the input. The state equations are of the form 

          
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) + 𝐺(𝑥)𝑢 (2) 

𝑦 = 𝑥 

That output equation is one limitation of our analysis. It is easy to see that we could trivially 

extend the analysis to an output equation 

𝑦 = ℎ(𝑥) 
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but not as far as allowing an input term in the output equation. To keep the notation simple, 

then, we will restrict discussion to the case where the output is the whole state. 

To avoid complications, we shall also assume that the state space is completely reachable, 

and assume sufficient smoothness to give differentiable storage functions. 

2. Some known results 

As a starting point, we can define dissipativeness either by the input-output condition 

𝐸(0, 𝑢, 𝑦, 𝑡0, 𝑡1) ≥ 0 

or by the state-space condition 

𝜙(𝑥(𝑡0)) + 𝐸(𝑥(𝑡0), 𝑢, 𝑦, 𝑡0, 𝑡1) ≥ 𝜙(𝑥(𝑡1)) 

where in the latter case we require the storage function 𝜙 to satisfy 𝜙(0) = 0 and 𝜙(𝑥) ≥ 0 

for all 𝑥. This latter condition was the original definition of a dissipative system given by 

Willems [4]. It was later shown [2, 3] that, given reachability of the state space, the two 

definitions are equivalent. 

Let us define the available storage as 

𝜙𝑎(𝑥0) = −
𝑖𝑛𝑓
𝑢

 𝐸(𝑥0, 𝑢, 𝑦, 𝑡0, 𝑡1) 

with boundary conditions 𝑥(𝑡0) = 𝑥0,  𝑥(𝑡1) unconstrained. 

We can also define a required supply 

𝜙𝑟(𝑥0) =
𝑖𝑛𝑓
𝑢

 𝐸(0, 𝑢, 𝑦, 𝑡−1, 𝑡0) 

with boundary conditions 𝑥(𝑡−1) = 0, 𝑥(𝑡0) = 𝑥0. 

Then it turns out that every storage function 𝜙 satisfies 

0 ≤ 𝜙𝑎(𝑥) ≤ 𝜙(𝑥) ≤ 𝜙𝑟(𝑥) 

for all 𝑥. It also turns out that the set of all storage functions is a convex set. 

3. A preliminary calculation 

Suppose that we know that a scalar quadratic function of a vector 𝑢 is nonegative for all 𝑢. 

That is, 

𝑢𝑇𝐴𝑢 + 2𝑏𝑇𝑢 + 𝑐 ≥ 0 

where, without any loss of generality, the matrix 𝐴 can be assumed to be symmetric. (The 2 is 

introduced to simplify the algebra.) We want to show that this can be simplified down to the 

form 

(ℓ + 𝑊𝑢)𝑇(ℓ + 𝑊𝑢) ≥ 0 

This was already shown in [3], but since the proof is not entirely obvious it seems like a good 

idea to give a more detailed proof. 

Clearly we must have 𝐴 ≥ 0. That means that there is an orthonormal matrix 𝑇 such that 
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𝑇𝐴𝑇𝑇 = [
𝐷 0
0 0

] 

and 𝐷 is positive definite. Let 𝑇𝑢 and 𝑇𝑏 be partitioned as 

𝑇𝑢 = [
𝑥
𝑦] 𝑇𝑏 = [

𝑏1

𝑏2
] 

Then the original inequality becomes 

𝑥𝑇𝐷𝑥 + 2𝑏1
𝑇𝑥 + 2𝑏2

𝑇𝑦 + 𝑐 ≥ 0 

or 

(𝐷1/2𝑥 + 𝐷−1/2𝑏1)
𝑇

(𝐷1/2𝑥 + 𝐷−1/2𝑏1) − 𝑏1
𝑇𝐷−1𝑏1 + 2𝑏2

𝑇𝑦 + 𝑐 ≥ 0 

This is supposed to be true for all 𝑥 and 𝑦, which is possible only if 𝑏2 = 0. Also, by 

checking the case 𝑥 = −𝐷−1𝑏1, we can see that 𝑐 − 𝑏1
𝑇𝐷−1𝑏1 ≥ 0. Factoring that last 

quantity as 𝑘𝑇𝑘, we get 

(𝐷1/2𝑥 + 𝐷−1/2𝑏1)
𝑇

(𝐷1/2𝑥 + 𝐷−1/2𝑏1) + 𝑘𝑇𝑘 ≥ 0 

which can also be written as 

(ℓ + 𝑊𝑢)𝑇(ℓ + 𝑊𝑢) ≥ 0 

where 

ℓ = [𝐷−1/2𝑏1

𝑘
] 𝑊 = [𝐷1/2 0

0 0
] 𝑇 

The factorisation is not unique, but this is probably the simplest choice of ℓ and 𝑊. 

4. The main result 

Theorem. The system (2) is dissipative with respect to the 𝐸 defined by equation (1) iff there 

exist functions 𝜙(𝑥), ℓ(𝑥), and 𝑊(𝑥) such that 𝜙(𝑥) = 0, 𝜙(𝑥) ≥ 0 for all 𝑥, and 

∇𝜙𝑇𝑓 = 𝑞 − ℓ𝑇ℓ 

1

2
𝐺𝑇∇𝜙 = 𝑠 − 𝑊𝑇ℓ 

𝑅 = 𝑊𝑇𝑊 

Proof. If we have a function 𝜙(𝑥) such that 

𝜙(𝑥(𝑡0)) + ∫ (𝑞(𝑥(𝑡)) + 2𝑠(𝑥(𝑡))𝑇𝑢(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑥(𝑡))𝑢(𝑡))
𝑡1

𝑡0

𝑑𝑡 ≥ 𝜙(𝑥(𝑡1)) 

we can reduce it to the differential form 

−
𝑑𝜙(𝑥(𝑡))

𝑑𝑡
+  𝑞(𝑥(𝑡)) + 2𝑠(𝑥(𝑡))𝑇𝑢(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑥(𝑡))𝑢(𝑡) ≥ 0 

or 

−∇𝜙(𝑥)𝑇𝑓(𝑥) − ∇𝜙(𝑥)𝑇𝐺(𝑥)𝑢 +  𝑞(𝑥) + 2𝑠(𝑥)𝑇𝑢 + 𝑢𝑇𝑅(𝑥)𝑢 ≥ 0 
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For any fixed 𝑥 this is a quadratic function of u. By the argument of section 3, we can find 

𝑊(𝑥) and ℓ(𝑥) such that 

−∇𝜙(𝑥)𝑇𝑓(𝑥) − ∇𝜙(𝑥)𝑇𝐺(𝑥)𝑢 +  𝑞(𝑥) + 2𝑠(𝑥)𝑇𝑢 + 𝑢𝑇𝑅(𝑥)𝑢

= (𝑊(𝑥)𝑢 + ℓ(𝑥))
𝑇

(𝑊(𝑥)𝑢 + ℓ(𝑥)) 

Which must be true for any fixed 𝑥. Expanding this out, and equating powers of 𝑢, we get 

 

∇𝜙𝑇𝑓 = 𝑞 − ℓ𝑇ℓ 

1

2
𝐺𝑇∇𝜙 = 𝑠 − 𝑊𝑇ℓ 

𝑅 = 𝑊𝑇𝑊 

 

This proves half of the result. For the other half, we just have to start with these three 

equations and work backwards through the same argument. □ 

It should be obvious that we can also write these equations as an inequality 

[
𝑞 − ∇𝜙𝑇𝑓 𝑠 −

1

2
𝐺𝑇∇𝜙

𝑠𝑇 −
1

2
∇𝜙𝑇𝐺 𝑅

] ≥ 0 

In general the solutions are non-unique. In fact, not even the number of rows of 𝑊 is fixed. 

5. Conclusions 

The known result in [1, 3] is based on an energy function where the integrand is jointly 

quadratic in both the input and the output. We have now shown that an almost identical result 

can be found if we relax that condition to requiring only that the integrand be quadratic in the 

input. 
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