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ABSTRACT: Some results in dissipative systems theory require 

that the supply rate be such that it can be forced negative by 

choice of input. In this note we show that this can be expressed as 

an eigenvalue condition. 

 

1. Introduction 

The theory of dissipative systems [Wil72] [HM80] [Moy14] defines a system to be 

dissipative if a certain quantity that depends on the input and output is nonnegative for all 

possible inputs. In the most general case, the quantity in question is an abstract “input 

energy”. Most commonly we restrict ourselves to time-invariant continuous-time systems and 

ℒ2 signal spaces, in which case we express the “energy” as a time integral. This leads to the 

following definitions. 

 

Definition 1. A system with input u and output y is dissipative, in the input-output sense, 

with respect to supply rate w iff 

 ∫ 𝑤(𝑢(𝑡), 𝑦(𝑡)
𝑇

0
𝑑𝑡 ≥ 0 (1) 

for all 𝑇 ≥ 0 and all inputs u. 

 

Definition 2. A system with state x, input u, and output y is dissipative, in the state-space 

sense, with respect to supply rate w iff there exists a function 𝜑(𝑥), with 𝜑(0) = 0 and 

𝜑(𝑥) ≥ 0 for all x, and 𝜑(𝑥) finite for all reachable x, such that 

𝜑(𝑥(0) + ∫ 𝑤(𝑢(𝑡), 𝑦(𝑡)
𝑇

0

𝑑𝑡 ≥ 𝜑(𝑥(𝑇) 

for all 𝑇 ≥ 0 and all inputs u. 

 

The function 𝜑(∙) is called a storage function, because it is analogous to stored energy. 
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If a state-space description exists, then for the purposes of comparing the two definitions it is 

usual to require that the initial state be zero in Definition 1. In that case, an important 

conclusion of the theory [HM80] is that the two definitions are equivalent. 

Not all supply rates 𝑤(∙,∙) are equally useful. Consider, for example, a supply rate with the 

property 𝑤(𝑢, 𝑦) ≥ 0 for all u and y. In that case, inequality (1) will always be satisfied, so 

that every system is dissipative with respect to that supply rate. Clearly, this is not a useful 

property. To make dissipativeness useful, we need to permit the supply rate to go negative, so 

that (1) defines a property of the system rather than simply of w. 

Because of this, a class of “interesting” supply rates was introduced in [HM80]. 

 

Property A. For any 𝑦 ≠ 0, there exists a 𝑢(𝑦) such that 𝑤(𝑢(𝑦), 𝑦) < 0. 

 

It is important to understand that this does not contradict inequality (1). In (1), u(t) and y(t) 

are not independent variables; they are linked by the dynamics of the system under 

consideration. In Property A, we are looking at w as a function of two variables, with no 

constraint introduced by the system. 

The assumption of Property A has proven to be useful in establishing several results. In 

[HM80], it turned out to be the main condition needed to ensure that the storage function is 

positive definite. In [Moy75] it was shown to be a condition that allowed establishing a link 

between time-domain and frequency-domain criteria in linear-quadratic control theory. In 

[Moy14, chapter 8], which deals with frequency domain conditions for dissipativeness, it 

turns out to be the assumption needed to link behaviour on the 𝑗𝜔 axis to behaviour 

elsewhere on the complex plane. 

2. Quadratic supply rates 

The purpose of this note is to derive a condition that implies Property A. We cannot do this 

for completely general supply rates, but we can do so in the widely used special case of a 

quadratic supply rate. Let us therefore confine our attention to 

𝑤(𝑢, 𝑦) = 𝑦𝑇𝑄𝑦 + 2𝑦𝑇𝑆𝑢 + 𝑢𝑇𝑅𝑢 = [𝑦𝑇 𝑢𝑇] [
𝑄 𝑆

𝑆𝑇 𝑅
] [
𝑦
𝑢
] 

where Q, S, and R are constant matrices of appropriate size. 

In what follows, it will be important to note that the matrix 

𝑀 = [
𝑄 𝑆

𝑆𝑇 𝑅
] 

is a real symmetric matrix. That means that it has real eigenvalues. 

3. The main result 

Suppose that the system of interest has m scalar inputs and n scalar outputs. That is, u is an 

m-vector and y is an n-vector. 
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Theorem. A sufficient condition for Property A to hold is that M have at least n negative 

eigenvalues. 

4. Proof of the result 

Since M is real and symmetric, it can be diagonalised by an orthogonal matrix. That is, there 

exists a real matrix V, with 𝑉−1 = 𝑉𝑇, such that 

𝑉𝑀𝑉𝑇 = Λ 

where Λ is diagonal. We can choose 𝑉 such that the negative eigenvalues of M come first in 

Λ, then the zero eigenvalues, and then the positive ones. Then we have 

𝑉𝑀𝑉𝑇 = [
−Λ1 0 0
0 0 0
0 0 Λ2

] 

where Λ1 and Λ2 are positive definite diagonal matrices. In some cases – for example, when 

all of the eigenvalues are negative – some of these blocks are missing. 

Of course, the partitioning is not the same as the partitioning of M, but if M has at least m 

negative eigenvalues then we have 

𝑀 = 𝑉𝑇 [
−Λa 0
0 Λb

] 𝑉 

where Λa consists of the first n rows and columns of Λ1, and Λb holds everything else. In 

general the diagonal entries of Λb will have a mixture of signs. 

Let V be partitioned in the same way as M, as 

𝑉 = [
𝑉11 𝑉12
𝑉21 𝑉22

] 

and define 

[
𝑧1
𝑧2
] = [

𝑉11 𝑉12
𝑉21 𝑉22

] [
𝑦
𝑢
] = [

𝑉11𝑦 + 𝑉12𝑢
𝑉21𝑦 + 𝑉22𝑢

] 

Observe that 

𝑤(𝑢, 𝑦) = 𝑧𝑇 [
−Λa 0
0 Λb

] 𝑧 = −𝑧1
𝑇Λ𝑎𝑧1 + 𝑧2

𝑇Λ𝑏𝑧2 

so we will have the desired result if we can show that the 𝑧1 term dominates. 

Consider first the case where 𝑉22 is nonsingular. In that case it is easy to show that 𝑉11 −
𝑉12𝑉22

−1𝑉21 is also nonsingular. Let 𝑢 = −𝑉22
−1𝑉21𝑦, so that 𝑧2 = 0 and 𝑧1 = (𝑉11 −

𝑉12𝑉22
−1𝑉21)𝑦. Nonsingularity of that last coefficient matrix means that 𝑧1 ≠ 0 whenever 𝑦 ≠

0, which implies Property A. 

At the other extreme, consider the case where 𝑉22 = 0. In this case, it turns out that any 

sufficiently large 𝑢 will make 𝑤(𝑢, 𝑦) < 0. The fact that 𝑉 is a unitary matrix means that 

𝑉𝑇𝑉 = [
𝑉11
𝑇 𝑉21

𝑇

𝑉12
𝑇 0

] [
𝑉11 𝑉12
𝑉21 0

] = [
𝑉11
𝑇 𝑉11 + 𝑉21

𝑇 𝑉21 𝑉11
𝑇 𝑉12

𝑉12
𝑇 𝑉11 𝑉12

𝑇 𝑉12
] = [

𝐼 0
0 𝐼

] 

and therefore 𝑉12
𝑇 𝑉12 = 𝐼 and 𝑉12

𝑇 𝑉11 = 0. The equations for 𝑧1 and 𝑧2 now become 
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𝑧1 = 𝑉11𝑦 + 𝑉12𝑢 

𝑧2 = 𝑉21𝑦 

Let 𝑢 = 𝛼𝑘, where 𝛼 is a scalar and 𝑘 is an arbitrary nonzero vector. Now 𝑧1 = 𝑉11𝑦 +
𝛼𝑉12𝑘, and the fact that 𝑉12

𝑇 𝑉12 = 𝐼 means that 𝛼𝑉12𝑘 ≠ 0 whenever 𝑘 ≠ 0. For any fixed 

given 𝑦, 𝑧2 is a constant and 𝑧1 is a linear function of 𝛼 plus a constant. That means that 

𝑤(𝑢, 𝑦) will be negative for sufficiently large 𝛼. 

The remaining case, and unfortunately the most complicated case, is where 𝑉22 is singular but 

nonzero. Because of the tedious algebra, the proof for this case has been relegated to the 

appendix. 

5. Conclusions 

Property A is an important assumption for several aspects of dissipative systems theory, but 

until now the task of expressing this property in terms of the (Q,S,R) matrices has proved to 

be elusive. Now we have finally been able to express this as an eigenvalue condition. 

The present result is a sufficient but not a necessary condition for Property A to hold. A 

necessary condition is as yet not available. 
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Appendix 1: The case of singular V22 

To illustrate how the proof works, consider first the case where 𝑉22 is in block form 

𝑉22 = [
𝑉3 0
0 0

] 

where 𝑉3 is nonsingular. Now we have 

𝑉𝑇𝑉 = [

𝑉11
𝑇 𝑉21𝑎

𝑇 𝑉21𝑏
𝑇

𝑉12𝑎
𝑇 𝑉3

𝑇 0

𝑉12𝑏
𝑇 0 0

] [

𝑉11 𝑉12𝑎 𝑉12𝑏
𝑉21𝑎 𝑉3 0
𝑉21𝑏 0 0

] = [

× × 𝑉11
𝑇 𝑉12𝑏

× × 𝑉12𝑎
𝑇 𝑉12𝑏

𝑉12𝑏
𝑇 𝑉11 𝑉12𝑏

𝑇 𝑉12𝑎 𝑉12𝑏
𝑇 𝑉12𝑏

] 

where the × entries indicate subblocks whose precise values are irrelevant to our argument. 

Since this must be equal to a unit matrix, we have inter alia that 𝑉12𝑏
𝑇 𝑉12𝑏 = 𝐼. That means 

that 𝑉12𝑏 has linearly independent columns. 

The equations for 𝑧 are 

𝑧1 = 𝑉11𝑦 + 𝑉12𝑎𝑢𝑎 + 𝑉12𝑏𝑢𝑏 

𝑧2𝑎 = 𝑉21𝑎𝑦 + 𝑉3𝑢𝑎 

𝑧2𝑏 = 𝑉21𝑏𝑦 

where 𝑧2 and 𝑢 have been partitioned in the obvious way. Now, for any given 𝑦, set 𝑢𝑎 =
𝑉3
−1𝑉21𝑎𝑦 and 𝑢𝑏 = 𝛼𝑘, where 𝛼 is a scalar and 𝑘 is an arbitrary nonzero vector. Now 𝑧1 =

𝑉11𝑦 + 𝛼𝑉12𝑏𝑘, and the fact that 𝑉12𝑏 has full column rank means that 𝑉12𝑏𝑘 ≠ 0 whenever 

𝑘 ≠ 0. 

Since, for each fixed 𝑦, 𝑧2 is constant while 𝑧1 can be made arbitrarily large by choice of 𝛼, 

we conclude that 𝑤(𝑢, 𝑦) < 0 for sufficiently large 𝛼. 

In the more general case where 𝑉22 is singular but nonzero, there exist nonsingular matrices 

𝑇1 and 𝑇2 such that 

𝑇1𝑉22𝑇2 = [
𝑉3 0
0 0

] 

where 𝑉3 is nonsingular. The 𝑧 equations are now 

𝑧1 = 𝑉11𝑦 + 𝑉12𝑢 

𝑧2 = 𝑉21𝑦 + 𝑇1
−1 [

𝑉3 0
0 0

] 𝑇2
−1𝑢 

Let 𝑣 = [
𝑣1
𝑣2
] = 𝑇2

−1𝑢 and [
𝑧2𝑎
𝑧2𝑏

] = 𝑇1𝑧2. Also let 𝑉12𝑇2 and 𝑇1𝑉21 be partitioned as 𝑉12𝑇2 =

[𝑉12𝑎 𝑉12𝑏] and 𝑇1𝑉21 = [
𝑉21𝑎
𝑉21𝑏

]. Then 

𝑧1 = 𝑉11𝑦 + 𝑉12𝑎𝑣1 + 𝑉12𝑏𝑣2 

𝑧2𝑎 = 𝑉21𝑎𝑦 + 𝑉3𝑣1 

𝑧2𝑏 = 𝑉21𝑏𝑦 

As before, set 𝑣1 = 𝑉3
−1𝑉21𝑎𝑦, which makes 𝑇1𝑧2 (and therefore 𝑧2) depend only on 𝑦. Also 

set 𝑣2 = 𝛼𝑘, where 𝛼 is a scalar and 𝑘 is an arbitrary constant vector. If we can show that 

𝑉12𝑏𝑘 ≠ 0, then by choice of 𝛼 we can make 𝑤(𝑢, 𝑦) = 𝑤(𝑇2𝑣, 𝑦) < 0. 
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Suppose the contrary. If 𝑉12𝑏𝑘 = 0 for some 𝑘 ≠ 0, then we have 

𝑉12𝑇2 [
0
𝑘
] = [𝑉12𝑎 𝑉12𝑏] [

0
𝑘
] = 0 

That means that we have a 𝑏 = 𝑇2 [
0
𝑘
] ≠ 0 such that 𝑉12𝑏 = 0. We also have 

𝑇1𝑉22𝑇2 [
0
𝑘
] = [

𝑉3 0
0 0

] [
0
𝑘
] 

𝑇1𝑉22𝑏 = 0 

which implies 𝑉22𝑏 = 0. Thus we have 

[
𝑉11 𝑉12
𝑉21 𝑉22

] [
0
𝑏
] = 0 

which is impossible because 𝑏 ≠ 0 and 𝑉 is nonsingular. We therefore conclude that 𝑉12𝑏𝑘 ≠
0 for all 𝑘 ≠ 0. 

 

 

 

 


