
page 1 of 17 

 

 

Software implementation of digital filters 

Peter Moylan 

Glendale, NSW, Australia 

peter@pmoylan.org     http://www.pmoylan.org 

February 2017 

 

ABSTRACT: This report deals with the problem of designing and 

implementing digital filters in software. The report is, in effect, 

documentation for the accompanying software. 

 

1. Introduction 

A very common requirement in embedded real-time applications is to implement a filter in 

software. The point of this document is to show how to do it. We are naturally concerned 

with real-time applications, where there is often a focus on making the sampling rate as high 

as possible; but the details described here apply to any sampling rate. 

In terms of theory, there is nothing original in this report. All of the theory is well-known and 

well-understood, to the point where we don’t even need to mention primary references. 

(Fortunately, because I do not have the library access that would allow consulting the primary 

sources.) Unfortunately, the available sources rarely mention how to design the software to 

do the job. In descriptions of frequency pre-warping, for example – something that is 

necessary when converting from a Laplace transform to a discrete-time description – it is not 

entirely clear whether one should use the warping mapping or its inverse. The easiest way to 

clarify this is to point to the source code that does the job. 

All of the steps described in this report are easy in principle, but tedious and error-prone 

when one tries to do the algebra. This is the sort of thing that needs to be automated. The 

novel part of this report is that it can be automated, with no need to worry about transferring 

design parameters from off-line calculations to the real-time software. 

It is natural to distinguish between the implementation of a digital filter and the design of that 

filter, because the implementation needs to be made as efficient as possible – especially in 

applications with high sampling rates – while the design involves more work but has a less 

pressing deadline. Typically, the design is done off-line and then the parameters are copied 

manually into the software. I would argue here that this is a bad approach; there is too much 

scope for error in the copying, and the whole process has to be re-done if the specifications 

change. My preference is to put the design calculations into the initialisation code of the real-

time software. This is an unconventional approach, but in practice it works well. The 

overhead is small, and the calculations happen only when the software is going through its 

start-up operations. (Which can be lengthy, because of things like integrity checking and 

checking that the communications channels are working.) The designer need only specify the 

basic things like filter bandwidth. The software can deal with the tedious details of turning 

mailto:peter@pmoylan.org
http://www.pmoylan.org/


Software implementation of digital filters 
 

 

page 2 of 17 

this into a filter implementation. The only difference between this and the conventional 

approach is that we are not copying coefficients from one program to another. 

This does not remove the requirement of simulating the filter response before committing the 

specifications. As we shall see, digital filters become unstable, because of rounding error, if 

we set the filter order too high, so we need to work out what the order should be. (The order 

also affects the computation time, which is usually a limited resource in real-time 

applications.) In addition the anti-aliasing filter, which is typically a combination of analogue 

and digital filters, needs to be checked to see that it is really rejected the unwanted 

frequencies. 

1.1 The code 

The code that accompanies this report can be fetched from [Moy17]. 

There are two versions, in C and in Modula-2. The tests described in later sections were done 

using XDS Modula-2 and Open Watcom C. Historically, the C version was developed first – 

using a compiler that is no longer available to the author – because the target processors had 

only C compilers. After translation to Modula-2 some errors were found (running off the 

beginning of an array) that had remained undetected for a few years because C does not have 

true arrays. Tests on that code led to the belief that the implementation could not run reliably 

for filter order greater than 8. With the  Modula-2 version this stability problem was much 

reduced, and some improvements were discovered. Finally, the Modula-2 code was translated 

back into C, giving a much superior version. The two implementations are now almost 

identical. The Modula-2 version runs faster and can handle higher-order filters, but that is 

only because the rules of low-level languages like C and C++, and possibly Java, make it 

harder to do code optimisation. A better C compiler might well get around that problem. 

The Modula-2 versions have been used for most of the results in this report, basically because 

we do not fully trust the C versions. 

One difference that can be observed between the C and Modula-2 implementations is the way 

the memory is allocated for the filter data structure. (This is the data structure that tracks the 

filter state.) The C code requires the caller to reserve a suitable record. The Modula-2 code 

dynamically allocates the record. This difference can be explained by a difference in 

conventions in the two languages – the Modula-2 tradition places a higher priority on 

information hiding, while the C and C++ traditions prefer revealing the details of structures to 

the client software – but there is also a difference in that real-time programmers are reluctant 

to use dynamically allocated memory. We would argue, in this case, that the dynamic 

allocation occurs only during the initialisation code, so that the memory allocation happens 

only in the initialisation phase. In any case, the languages being used do not support garbage 

collection, a feature that should definitely be disabled for real-time applications. 

2. Overview 

In the remainder of this report we take a bottom-up approach. First, we look at the anti-

aliasing issue. Then we consider how a 𝑧-transform description can efficiently be turned into 

a fast implementation. Next, we look at how an 𝑠-domain transfer function can be turned into 

a discrete-time 𝑧-domain transfer function. Finally, we consider how a filter description in 

terms of bandwidth can be turned into a transfer function. 



Software implementation of digital filters 
 

 

page 3 of 17 

The emphasis throughout is on the question “How can we automate the calculations, rather 

than requiring the implementer to rely on either hand calculations or off-line calculations”? 

The goal is to ensure that the crucial design calculations are done during the initialisation 

phase of the software, rather than being off-line calculations with what that implies in terms 

of manual copying errors. 

3. The Nyquist sampling theorem 

A filter implemented in software necessarily operates in discrete time. A hardware filter 

usually operates in continuous time. In a typical real-time application, the sampling rate is so 

high that there is no practical difference between the two. That is true in every situation but 

one: when we need an anti-aliasing filter. 

The Nyquist sampling theorem [Nyq] says that sampled data is a good representation of the 

incoming continuous signal only if the incoming signal has no frequency components above a 

certain critical frequency. That critical frequency is where the sampling rate is such that we 

are getting two samples per cycle. That is, if the sampling interval is 𝑇, then the critical 

frequency is 

𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =
1

2𝑇
 

Equivalently, if the sample rate is 𝑓𝑠 samples/second, then 

𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =
1

2
𝑓𝑠 

That means that we have to pass the incoming signal through an anti-aliasing filter that 

rejects all signals of frequency 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 and above. Because no filter has a perfectly sharp 

cutoff, the bandwidth of the anti-aliasing filter must be below 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡. How far below 

depends on the filter order and on how we define “negligible” for the output of the filter. The 

calculation of the required bandwidth is a matter of simple arithmetic. This calculation must, 

however, be done. It is tempting to make a guess and say that it should be good enough to set 

the bandwidth at, say 0.8𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡. When you check the arithmetic, you will find that the 

difference between 0.8 and 1.0 is very small on a logarithmic scale; and it is important to use 

the logarithmic scale because of the way filter gain varies with frequency. 

4. Analogue vs digital filters 

It is fundamentally impossible to implement an anti-aliasing filter in software, except in the 

unrealistic case where we can guarantee that there is no high-frequency noise in the data. The 

reason for this is that the aliasing that is the subject of the Nyquist criterion happens at the 

A/D converter. By the time the software sees the samples, the data stream is already corrupt. 

The only solution to this is to put an analogue anti-aliasing filter ahead of the A/D converter. 

What is possible is to partition the job between the hardware filter and a software filter, 

especially if oversampling is used. The order of a hardware filter is constrained by 

component tolerances, to the point where it is expensive to go beyond fourth order. A 

software filter, being limited only by processing time and the effect of round-off errors, can 

achieve a sharper cutoff. 



Software implementation of digital filters 
 

 

page 4 of 17 

Consider the case where the application requires a sampling rate of 10 kHz, but where the 

A/D converter is capable of handling 50,000 samples/second. At the 50 kHz rate the Nyquist 

frequency is 25 kHz, so we can design a hardware filter with a cutoff somewhere between 10 

kHz and 25 kHz. The software then can assume that the input has no components above 25 

kHz, or a little less. We can now design a software low-pass filter, working at 50 kHz, to 

remove frequencies between 10 kHz and 25 kHz. The output of that filter can be 

downsampled [Dec], by taking only every fifth sample, to produce a 10 kHz data stream that 

has been through an anti-aliasing procedure. At this point, if necessary, we can use the filter 

that the application really wants, with confidence that the aliasing problem has been solved. 

Downsampling has another benefit. By, in effect, averaging every block of 5 samples, we get 

a better precision than the A/D converter can provide. This becomes really significant when 

we can use much larger downsampling factors. 

5. Practical implementation of a z-domain transfer function 

Consider the z-domain transfer function, of degree 𝑁, 

𝐺(𝑧) =
𝑛0𝑧

𝑁 + 𝑛1𝑧
𝑁−1 + 𝑛2𝑧

𝑁−2 + ⋯+ 𝑛𝑁

𝑑0𝑧𝑁 + 𝑑1𝑧𝑁−1 + 𝑑2𝑧𝑁−2 + ⋯+ 𝑑𝑁
 

or equivalently 

𝐺(𝑧) =
𝑛0 + 𝑛1𝑧

−1 + 𝑛2𝑧
−2 + ⋯+ 𝑛𝑁𝑧−𝑁

𝑑0 + 𝑑1𝑧−1 + 𝑑2𝑧−2 + ⋯+ 𝑑𝑁𝑧−𝑁
 

It is essential that 𝑑0 ≠ 0, because otherwise we would have a non-causal transfer function, 

where the output depended on future inputs. This lets us scale the coefficients by dividing the 

numerator and denominator by 𝑑0. From now on, then, let us assume that 𝑑0 = 1. 

If this transfer function represents a filter with input 𝑢 and output 𝑦, and if 𝑢(𝑘) and 𝑦(𝑘) are 

the input and output at time 𝑘, then 

𝑑0𝑦(𝑘) + 𝑑1𝑦(𝑘 − 1) + 𝑑2𝑦(𝑘 − 2) + ⋯+ 𝑑𝑁𝑦(𝑘 − 𝑁)
= 𝑛0𝑢(𝑘) + 𝑛1𝑢(𝑘 − 1) + 𝑛2𝑧

−2𝑢(𝑘 − 2) + ⋯+ 𝑛𝑁𝑢(𝑘 − 𝑁) 

or more compactly 

𝑦(𝑘) = 𝑛0𝑢(𝑘) + ∑𝑛𝑗𝑢(𝑘 − 𝑗)

𝑁

𝑗=1

− ∑𝑑𝑗𝑦(𝑘 − 𝑗)

𝑁

𝑗=1

 

This can be implemented with the aid of two arrays holding the last 𝑁 inputs and outputs. We 

can, however, get a simpler implementation by introducing the concept of state. 

Consider the state equations 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

where 𝐴 is an 𝑁 × 𝑁 matrix, 𝐵 is an 𝑁 × 1 matrix, 𝐶 is a 1 × 𝑁 matrix, 𝐷 is a 1 × 1 matrix, 

and 𝑥 is an 𝑁-vector. (This is the appropriate formulation for a system with a single input 𝑢 

and a single output 𝑦). It is a well-known result of system theory that the transfer function 

from 𝑢 to 𝑦 is 



Software implementation of digital filters 
 

 

page 5 of 17 

𝐺(𝑧) = 𝐶(𝑧𝐼 − 𝐴)−1𝐵 + 𝐷 

Given the transfer function, the choice of state-space representation is not unique. For our 

purposes, a convenient choice turns out to be 

  𝐴 =

[
 
 
 
 
−𝑑1 −𝑑2 … −𝑑𝑁−1 −𝑑𝑁

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0 ]

 
 
 
 

    𝐵 =

[
 
 
 
 
1
0
⋮
0
0]
 
 
 
 

 

  𝐶 = [𝑛1 − 𝑛0𝑑1 𝑛2 − 𝑛0𝑑2 … 𝑛𝑁 − 𝑛0𝑑𝑁]  𝐷 = [𝑛0] 

The simple structure of 𝐴 makes it not too difficult to confirm this claim. For those who want 

to check the state-space literature, the particular structure we have chosen is similar to, but 

not identical to, a form known as controllable canonical form. That, too, has as a major 

motivation the simple form of the 𝐴 matrix. 

Naturally, we would not want the overhead of doing full matrix calculations at the (often 

high) sampling rate. Luckily, these calculations simplify down to 

𝑥1(𝑘 + 1) = ∑𝑎𝑗𝑥𝑗(𝑘) + 𝑢(𝑘)

𝑁

𝑗=1

 

𝑦(𝑘) = ∑𝑐𝑗𝑥𝑗(𝑘) + 𝑛0𝑢(𝑘)

𝑁

𝑗=1

 

where the coefficients 𝑎𝑗 = −𝑑𝑗 and 𝑐𝑗 = 𝑛𝑗 − 𝑛0𝑑𝑗 can be precomputed. To this we must 

add 

𝑥𝑗(𝑘 + 1) = 𝑥𝑗(𝑘)  for  2 < 𝑗 ≤ 𝑁 

The key to making this efficient is to store the state 𝑥1. . 𝑥𝑁 in a circular buffer; that is, in an 

array whose subscript wraps around. We need to keep track of the location of 𝑥1 in the array, 

because it changes at every time step. At each time, we step through the circular buffer 

performing the above calculations of 𝑥1(𝑘 + 1) and 𝑦(𝑘). This leaves us at the place in the 

circular buffer where 𝑥𝑁 currently is. We store the new value of 𝑥1 at that position, 

effectively moving all states by one position. (But without doing any physical movement.) 

That automatically gives 𝑥2. . 𝑥𝑁 their new values, without any need to touch them. 

This approach requires the same number of multiplications and additions as the obvious 

method of using two arrays. That was inevitable, because there are at least 2𝑁 coefficients 

regardless of how we formulate the problem. Using a circular buffer to hold the state does, 

however, speed the calculation by simplifying the bookkeeping work. It also lets a 

sophisticated compiler arrange the code to keep as many intermediate results as possible 

inside the hardware floating point registers, which improves both accuracy and speed. 

Ideally, we should keep the entire state in a form that retains the full hardware precision. (80 

bits, for the processor used for these tests.) We are not aware of a compiler that allows that 

option. (Non-optimising compilers store intermediate results in 64-bit variables.) We can 

reasonably assume, however, that optimising compilers keep intermediate results in internal 

registers for as long as possible. 



Software implementation of digital filters 
 

 

page 6 of 17 

6. Conversion from continuous time to discrete time 

Any software implementation of a filter necessarily operates in discrete time. In most cases, 

though, the specification of the required filter will be in continuous-time terms, probably in 

the form of a Laplace transform transfer function. The process of converting a continuous-

time transfer function 𝐺(𝑠) to a discrete-time 𝐻(𝑧) is tedious if done by hand, so we would 

prefer to automate the process. 

An accurate transformation would require us to use the mapping 

𝑧 = 𝑒𝑠𝑇  

where 𝑇 is the sampling interval. Unfortunately this would give a discrete-time transfer 

function that is not a ratio of polynomials, which would be unworkable. In practice, we have 

to use the bilinear approximation 

𝑧 =
1 + 𝑠𝑇/2

1 − 𝑠𝑇/2
 

To justify this, consider the Taylor series expansions 

𝑒𝑥 = 1 + 𝑥 + 
1

2
𝑥2 +

1

6
𝑥3 + ⋯ 

1 + 𝑥/2

1 − 𝑥/2
= 1 + 𝑥 + 

1

2
𝑥2 +

1

4
𝑥3 + ⋯ 

so the approximation is good if 𝑥 is not too large. The Nyquist sampling theorem says that we 

must be working with frequencies < 1
2𝑇⁄ , so our filter only has to be accurate in the 

complex frequency range |𝑠𝑇| <
1

2
. At the limit of that range the cubic term in the Taylor 

series is not totally negligible, but it is reasonably small. 

The inverse of the bilinear mapping is 

𝑠 =
2

𝑇

𝑧 − 1

𝑧 + 1
 

Given an 𝑠-domain transfer function 

𝐺(𝑠) =
∑ 𝑝𝑗𝑠

𝑗𝑁
𝑗=0

∑ 𝑞𝑗𝑠𝑗𝑁
𝑗=0

 

the bilinear transform maps this to 

𝐺𝑑(𝑧) =
∑ 𝑝𝑗 (𝑐

𝑧 − 1
𝑧 + 1)

𝑗
𝑁
𝑗=0

∑ 𝑞𝑗 (𝑐
𝑧 − 1
𝑧 + 1)

𝑗
𝑁
𝑗=0

 

where for convenience we have set 𝑐 =
2

𝑇
. This can be rewritten as 

𝐺𝑑(𝑧) =
∑ 𝑐𝑗𝑝𝑗(𝑧 − 1)𝑗(𝑧 + 1)𝑁−𝑗𝑁

𝑗=0

∑ 𝑐𝑗𝑞𝑗(𝑧 − 1)𝑗(𝑧 + 1)𝑁−𝑗𝑁
𝑗=0

 

We can expand some of the terms as 



Software implementation of digital filters 
 

 

page 7 of 17 

(𝑧 − 1)𝑗 = ∑(−1)𝑚𝐵𝑗𝑚𝑧𝑗−𝑚

𝑗

𝑚=0

 

(𝑧 + 1)𝑁−𝑗 = ∑ 𝐵𝑁−𝑗,𝑛𝑧𝑁−𝑗−𝑛

𝑁−𝑗

𝑛=0

 

where 𝐵𝑖𝑗 is the binomial coefficient 

𝐵𝑖𝑗 = ∏
𝑖 + 1 − 𝑘

𝑘

𝑗

𝑘=1

=
𝑖!

𝑗! (𝑖 − 𝑗)!
 

It is not hard to show that the above product is 

(𝑧 − 1)𝑗(𝑧 + 1)𝑁−𝑗 = ∑ 𝐾𝑗𝑛𝑧𝑛

𝑁

𝑛=0

 

where 

𝐾𝑗𝑛 = ∑ (−1)𝑚𝐵𝑗𝑘𝐵𝑁−𝑗,𝑛−𝑘

min (𝑛,𝑗)

𝑘=0

 

From there it is obvious how to calculate the numerator and denominator coefficients for 

𝐺𝑑(𝑧). This is an excellent example of a calculation that is tedious and error-prone if done by 

hand, but easy to do in software. 

The formulae given for 𝐵𝑖𝑗 are not the most efficient for practical use. It is better to store a 

Pascal’s triangle in the array 𝐵 before starting the calculation. 

It is worth noting the following point. For a stable minimum-phase transfer function in the 

𝑠 domain, the corresponding transfer function in the 𝑧 domain is going to have a denominator 

with alternating sign, which implies complications in the final results (we are subtracting 

terms which are almost equal). We shall deal with this problem in a later section. 

7. Frequency warping 

As shown in the last section, the bilinear transformation used to map from continuous time to 

discrete time is only an approximation to an ideal transformation. It turns out [Bilin] that 

there is a slight nonlinear distortion in the frequency scale, given by 

𝜔𝑎 =
2

𝑇
tan (𝜔

𝑇

2
) 

or, in terms of frequency in Hz, 

𝑓𝑎 =
1

𝜋𝑇
tan(𝜋𝑓𝑇) 

such that the discrete-time filter behaves at frequency 𝜔 the same way that the original 𝑠-

domain transfer function behaves at frequency 𝜔𝑎. This means that if, for example, you want 

the filter to have a pole at 𝜔, you have to put the pole at 𝜔𝑎 in your continuous-time 



Software implementation of digital filters 
 

 

page 8 of 17 

frequency specification. This is called pre-warping: we warp the original frequency 

specification so that, after the bilinear transform, the pole is warped back to where you 

originally wanted it. 

It is not practical to pre-warp the entire frequency range of interest, because that would lead 

to a nonlinear filter even if the calculations were feasible. In practice, we pre-warp the corner 

points: the poles and zeros of the original transformation. 

Consider an example where the sampling frequency is 20 kHz (so that the Nyquist frequency 

is 10 kHz), and we want a low-pass filter with a bandwidth of 7 kHz. We would not want to 

go much closer to the Nyquist frequency than that. We have 𝑇 = 5 × 10−5 seconds, so 

𝑓𝑎 =
2

5 × 10−5
tan(𝜋 × 7 × 103 × 5 × 10−5) 

𝑓𝑎 = 7.85 kHz 

This is more than a 10% change, so should not be ignored. If we neglect the pre-warping, the 

final bandwidth turns out to be only 5.3 kHz, a long way below the specification. For 

frequencies that are a long way below the Nyquist frequency, pre-warping is less critical. 

Note that the warping must be done while we are still at the high-level description using poles 

and zeroes. Once the transfer function is expressed as the ratio of two polynomials, 

prewarping is no longer feasible, unless of course we are willing to factor the polynomials. 

The following graph shows 𝑓𝑎 𝑓⁄ , for the case of a 10 kHz sampling rate. (So that the Nyquist 

frequency is 5 kHz.) It can be seen that the ratio remains close to 1 for small frequencies, but 

rises rapidly as one approaches the Nyquist frequency. 

 

8. Butterworth filters 

Often enough, a filter specification is not in the form of a transfer function, but is instead 

expressed in terms of passbands and/or stopbands. In this section we look at how to 

implement low-pass, high-pass, bandpass, and bandstop Butterworth filters. Doing the same 

job for other filter types is left as an exercise for the reader. 

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

Pre-warping factor



Software implementation of digital filters 
 

 

page 9 of 17 

The advantage of a Butterworth filter is that it is maximally flat in the passband. Other filter 

types can give a sharper cutoff at the edge of the passband, but at the cost of some ripple near 

the edge of the passband. 

8.1  Normalised Butterworth filter 

A normalised Butterworth filter is a low-pass filter with a bandwidth of 1 rad/s. This is the 

starting point of any Butterworth filter design. Once we have the normalised filter, we can 

apply scaling to produce the desired bandwidth. 

The normalised Butterworth filter of order 𝑁 has frequency response 

|𝐺(𝑗𝜔|2 =
1

1 + 𝜔2𝑁
 

To achieve this, we place poles in an equally-spaced pattern on the unit circle. (But, of 

course, we retain only the ones in the left half-plane.) The result is a transfer function 

𝐺(𝑠) =
1

𝑝(𝑠)
 

where, for a filter of order 𝑁, 𝑝(𝑠) turns out to be [But] 

  𝑝(𝑠) = ∏ [𝑠2 − 2𝑠 cos (
2𝑘+𝑁−1

2𝑁
𝜋) + 1]

𝑁/2
𝑘=1     for 𝑁 even 

  𝑝(𝑠) = (𝑠 + 1)∏ [𝑠2 − 2𝑠 cos (
2𝑘+𝑁−1

2𝑁
𝜋) + 1]

(𝑁−1)/2
𝑘=1   for 𝑁 odd 

This can be confirmed by simple trigonometry, given the requirement for equally spaced 

poles. Apart from the extra factor for odd 𝑁, this is just a product of quadratics, so what we 

need in software is the elementary job of multiplying polynomials. 

8.1  Low-pass filter 

Given a normalised filter 

𝐺𝑛𝑜𝑟𝑚(𝑠) =
1

𝑠𝑁 + 𝑎𝑁−1𝑠𝑁−1 + 𝑎𝑁−2𝑠𝑁−2 + ⋯ 
 

with bandwidth 1 rad/s, we can turn it into a low-pass filter with bandwidth 𝐵 rad/s by 

changing 𝑠 to 𝑠/𝐵. This gives 

𝐺(𝑠) =
1

𝑠𝑁/𝐵𝑁 + 𝑎𝑁−1𝑠𝑁−1/𝐵𝑁−1 + 𝑎𝑁−2𝑠𝑁−2/𝐵𝑁−2 + ⋯ 
 

whose implementation in software is obvious. 

8.2  High-pass filter 

For a high-pass filter with cutoff 𝐵 rad/s, we instead change 𝑠 to 𝐵/𝑠. This gives 

𝐺(𝑠) =
𝑠𝑁

𝐵𝑁 + 𝑎𝑁−1𝐵𝑁−1𝑠 + 𝑎𝑁−2𝐵𝑁−2𝑠2 + ⋯ 
 

Note that the powers of 𝑠 in the denominator are in the opposite order from the expression for 

the low-pass case. 



Software implementation of digital filters 
 

 

page 10 of 17 

8.3  Bandpass filter 

A bandpass filter with two frequency limits (after pre-warping, of course) 𝜔1 and 𝜔2, can be 

thought of as a combination of low-pass and high-pass filters. That suggests a mapping 

𝑠 → 𝐶𝑠 +
𝐷

𝑠
 

where 𝐶 and 𝐷 are constants to be determined. In terms of real frequency, this is 

𝑗𝜔 → 𝑗𝜔𝐶 +
𝐷

𝑗𝜔
 

or 

𝜔 → 𝜔𝐶 −
𝐷

𝜔
 

Since the normalised filter has a corner frequency of 1 rad/s, it is tempting to say that the 

right side must evaluate to 1 for both 𝜔 = 𝜔1 and 𝜔 = 𝜔2. That turns out to be a mistake. It 

does map those two frequencies as desired, but it does the wrong thing in the rest of the 

complex plane, giving an unstable filter. 

Instead, we need to remember that the normalised Butterworth filter also has a response for 

negative frequencies. We can therefore map 𝜔1 to -1 and 𝜔2 to +1. Now we have 

−1 = 𝜔1𝐶 −
𝐷

𝜔1
 

+1 = 𝜔2𝐶 −
𝐷

𝜔2
 

This is easily solved to give 

𝐶 =
1

𝜔2−𝜔1
   𝐷 =

𝜔1𝜔2

𝜔2−𝜔1
 

so the map is now 

𝑠 →
1

𝑊
(𝑠 +

𝐴

𝑠
) 

where 𝐴 = 𝜔1𝜔2 and 𝑊 = 𝜔2 − 𝜔1. 

Let 𝑁 be the order of the desired bandpass filter. Because a bandpass filter has twice as many 

poles as a similar low-pass filter, it is reasonable to insist that 𝑁 be even, and our starting 

point should be a normalised Butterworth filter of order 𝑀 = 𝑁/2. 

𝐺𝑛𝑜𝑟𝑚(𝑠) =
1

∑ 𝑎𝑗𝑠𝑗𝑀
𝑗=0  

 

So the final transfer function is 

𝐺(𝑠) =  
1

∑ 𝑎𝑗
1

𝑊𝑗 (𝑠 +
𝐴
𝑠)

𝑗
𝑀
𝑗=0  

 

which simplifies down to 



Software implementation of digital filters 
 

 

page 11 of 17 

𝐺(𝑠) =
𝑊𝑀𝑠𝑀

∑ 𝑎𝑗𝑊𝑀−𝑗 ∑ 𝐴𝑗−𝑘𝐵𝑗𝑘𝑠2𝑘+𝑀−𝑗𝑗
𝑘=0

𝑀
𝑗=0  

 

where 𝐵𝑗𝑘 is the binomial coefficient as in earlier sections. The denominator is not quite in a 

neat polynomial form, but that is not a problem. Each time through the inner loop, the 

(2𝑘 + 𝑀 − 𝑗) tells us which denominator coefficient to increment. 

Another way to design a bandpass filter is as a cascade of a low-pass and a high-pass filter, 

but experimentation shows that this is not an attractive option. When the passband is wide, 

the performance of a filter designed this way is almost identical to the performance with the 

approach just discussed. When the passband is narrow, the performance is noticeably worse. 

The reason for this is the same as for the case of a bandstop filter designed that way, as 

shown in the next subsection. 

8.4  Bandstop filter 

Designing a bandstop filter turns out to be a little more difficult than the cases already 

considered. In this section we look at three approaches. 

One obvious way to design a bandstop filter is to calculate the transfer function 𝐺𝑏𝑝(𝑠) for 

the corresponding bandpass filter, and then use 𝐺𝑏𝑠(𝑠) = 1 − 𝐺𝑏𝑝(𝑠). This turns out to give a 

good result for a second-order filter. For any higher order, unfortunately, the results are 

disappointing: an implementation gives a transfer function that is rather different from the 

ideal. 

The reason is not hard to trace. It turns out that, for any order greater than 2, the numerator of 

𝐺𝑏𝑠(𝑠) is almost (but not quite) identical with the denominator. That means that all of the 

subsequent calculations rely critically on small differences between large numbers, so that 

rounding error ruins the results. 

A more traditional approach is to view the bandstop frequency response as the sum of a low-

pass response and a high-pass response. Although this sounds like a sensible approach, the 

attenuation in the stop band is often disappointing. The following graph shows the frequency 

response for an 8th order filter, made of the sum of a 4th order low-pass filter and a 4th order 

high-pass filter. For our present purpose it is convenient to display the graph on linear rather 

than logarithmic scales. The bandstop result is not precisely equal to the sum of the two 

components, again because of rounding error, but the general trend is clear. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000

8th order bandstop, 1000 to 1500 Hz

low-pass high-pass bandstop



Software implementation of digital filters 
 

 

page 12 of 17 

It can be seen that the minimum gain in the stopband is about 0.6. (The graphs seem to 

indicate that the minimum gain of the sum should really be 0.8, but one also has to take phase 

difference into account.) The reason is obvious. The two critical frequencies are close enough 

together that the two component filters both have non-negligible gain in the stopband This 

can be remedied by moving the two critical frequencies further apart, or by increasing the 

filter order. Still, it is a little disappointing that even 8th order is not good enough for this 

application. 

There is one further possible approach, one that does give much reduced gain in the stopband. 

At the beginning of this subsection it was mentioned that a 2nd order bandstop filter derived 

from a bandpass filter works well. By looking at the bandpass calculations for 2nd order, it is 

easily found that the transfer function for this filter is 

𝐺2(𝑠) =
𝑠2 + 𝐴

𝑠2 + 𝑊𝑠 + 𝐴
 

where 𝐴 = 𝜔1𝜔2 and 𝑊 = 𝜔2 − 𝜔1. We can cascade several of these filters to get a higher-

order filter 

𝐺𝑁(𝑠) = (
𝑠2 + 𝐴

𝑠2 + 𝑊𝑠 + 𝐴
)

𝑁/2

 

where the filter order 𝑁 is required to be even. 

One disadvantage of cascading is that it moves some attenuation into the passband. Normally 

the gain at the two corner frequencies is approximately 0.71, but when we cascade the 

sections we get a corner gain of 0.71𝑁 2⁄ . That means that the corners are more rounded than 

intended. We can reduce this effect a little by reducing the 𝑊 factor a little at each iteration, 

but that has to be done cautiously because cumulative errors can destabilise the filter. 

The following graph shows the results for three design methods. Method 1 is the method 

where we cascade the second order filters. Method 1a is a slight modification where we 

multiply 𝑊 by 0.9 at each stage (thus giving those stages a smaller stopband but with the 

same centre frequency). Method 2 uses a low-pass and a high-pass filter in parallel. 

 

It can be seen that method 2 gives the best “corner” behaviour, but less stopband attenuation. 

Methods 1 and 1a show some departure from symmetry inside the stopband. That is because 



Software implementation of digital filters 
 

 

page 13 of 17 

imperfections due to rounding errors – see next section – show up under conditions where the 

filter output is small. Because all three methods have their advantages, our software 

implements all three. 

9. Accuracy considerations 

It is generally understood that high-order filters are sensitive to the filter coefficients, to the 

point where a practical implementation can have a frequency response very different from the 

intended result. Because of this, it is a common practice to implement a high-order analogue 

filter as a cascade of second-order filters. 

This “cascade” approach is less attractive for digital filters, because of the extra 

computational load, and propagation of rounding error. Furthermore, it appears to be 

unnecessary; in the digital case, the only “component tolerance” problem is the rounding of 

finite-precision numbers. To reduce the number of calculations, and therefore the effect of 

rounding error, it is better to work directly with the discrete-time transfer function. 

The following two graphs show the frequency response of a 16th order bandpass filter, with 

passband 80 to 100 Hz. On a linear scale, the result looks excellent. On a log-log scale, we 

see a departure from ideal behaviour when the gain drops lower than about 0.006. In that low-

gain region, the filter looks like a lower-order filter. 

This is not just a feature of this example. For all examples tested, the frequency response is 

close to the theoretical ideal in and near the passband, but becomes non-ideal when the gain 

is low. 

 

 

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 500 1000 1500 2000 2500

Bandpass filter, order = 16

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

100 1000 10000

Bandpass filter, order = 16



Software implementation of digital filters 
 

 

page 14 of 17 

For comparison, here is the result for a lower-order version of this filter. The departure from 

ideal in the stopband is still there, but it is less obvious because a lower-order filter has less of 

a sharp edge. 

 

 

The reason for this behaviour is obvious enough in hindsight. At any frequency where the 

gain is supposed to be low, we have an input of reasonable amplitude but an output that is 

small. Looking at the filter state equations, this small output is typically caused by the 

subtraction of large numbers that are nearly equal. That means that rounding error, caused by 

finite arithmetic precision, can be comparable with the small numbers we are trying to 

compute. The result is an output that is small, but not quite as small as would be expected 

from the theory. What we are seeing in the stop band is the cumulative effect of rounding 

error. 

It is instructive to look at the details of how we convert from an 𝑠-domain transfer function to 

a 𝑧-domain one. A stable minimum-phase transfer function – that is, one that has all its poles 

and zeroes in the left half-plane – has positive (or, at worst, zero) coefficients in both the 

numerator and denominator polynomials. When we convert to discrete time, the resulting 𝑧 

transform usually has coefficients of alternating sign. This is the main reason we get large 

numbers that almost, but not quite, cancel each other. 

Let us consider the case of a low-pass filter with a bandwidth of 7 kHz and a sampling 

frequency of 20kHz. (Which places the bandwidth close to the Nyquist frequency of 10 kHz.) 

We get the following frequency response. 

 

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

100 1000 10000

Bandpass filter, order = 4

0.0001

0.0010

0.0100

0.1000

1.0000

6000

7 kHz low-pass, order = 1 to 32

N=1 N=2 N=4 N=8 N=16 N=32



Software implementation of digital filters 
 

 

page 15 of 17 

Here we see two interesting phenomena: 

(a) When the frequency approaches the Nyquist frequency, the gain drops rapidly 

towards zero. This is hardly surprising, given that we do not expect our filter to work 

above the Nyquist frequency because of aliasing problems. We do not expect “ideal” 

responses near the Nyquist frequency. 

(b) The higher-order filters, of order 𝑁 ≫ 1, behave as the theory predicts until the gain 

drops below about 0.005, after which they appear to behave as lower-order filters. 

In practice, this rarely matters. The departure from ideal behaviour occurs when the outputs 

are very small. In most applications, those small numbers are not going to have any adverse 

effect. Nevertheless, it is helpful to understand why it is happening. 

To remove the distracting effect of what happens near the Nyquist frequency, let us reduce 

the bandwidth a little while keeping the same sampling rate. The following graph adds a 

couple of straight lines, to allow us to estimate the slope. It appears that the slope, in the 

region where we depart from ideal behaviour, is about 26 dB/decade. That is what we would 

get from a filter of order 1.3, if such a thing could exist. Since the “order” is not an integer, it 

seems that we cannot explain the phenomenon in terms of order reduction or spurious zeroes. 

 

The reason appears to be a consequence of finite-precision arithmetic. In the 𝑠 domain, the 

denominator of the transfer function of this filter has coefficients with the property that the 

ratio between the biggest and the smallest is more than 1060. In the 𝑧 domain the range is 

more reasonable – it is affected not so much by the absolute frequency as by the ratio of the 

bandwidth to the Nyquist frequency – but something more subtle is happening. 

A stable and minimum phase transfer function in the 𝑠 domain has nonnegative coefficients. 

When this is transformed into the 𝑧 domain, the denominator has coefficients with alternating 

sign. This should not matter until we consider the values. It is inconvenient to illustrate this 

for a high-order filter, so let us instead look at the 6th order case. The transfer function is 

𝐺(𝑧) = 10−5
0.86 + 5.15𝑧−1 + 12.9𝑧−2 + 17.2𝑧−3 + 12.9𝑧−4 + 5.15𝑧−5 + 0.86𝑧−6

1.00 − 4.79𝑧−1 + 9.65𝑧−2 − 10.47𝑧−3 + 6.44𝑧−4 − 2.13𝑧−5 + 0.30𝑧−6
 

To this precision, the sum of the denominator coefficients is zero. A more precise calculation 

shows that the sum is 5.49 × 10−4. If it really were zero, the DC gain would be infinite, and 

the filter would be unstable. When we turn this transfer function into a filter implementation, 

0.001

0.01

0.1

1

100 1000

1 kHz low-pass, order=16

gain 20 dB/decade 26 dB/decade



Software implementation of digital filters 
 

 

page 16 of 17 

the filter is adding and subtracting numbers that almost, but not quite, cancel out. The 

accuracy of the filter depends heavily on that “not quite”. It should not be surprising, then, 

that when we get up to frequencies where the filter state is numerically small, rounding error 

might well make a significant contribution to the result. 

We do not know whether this is a full explanation of the behaviour in the stop band. In 

particular, it is not clear from this why the filter should act almost like a first order filter once 

it gets well into the stop band. It is clear, though, that rounding error is an important effect. 

Let us now move on to the topic of stability. Not surprisingly, this also depends on arithmetic 

accuracy. For a given filter specification (passband limit(s), sampling rate), we can try the 

effect of various filter orders. As the order goes beyond the usable range, a ripple develops in 

the passband, and soon becomes unacceptable. Shortly after that it goes unstable. The 1 kHz 

filter just discussed works well up to order N=17 using the software implementation that 

accompanies this report. It goes unstable at N=21 for the C code version, or N=22 for the 

Modula-2 code version. The difference is probably due to code optimisation, because more 

efficient code often means a smaller accumulation of rounding error. It is possible that the 

quality of the library code accompanying the compilers plays a part. 

In practice, of course, one would do tests to establish the point at which ripple appears in the 

frequency response, and back off a little from that point as a safety margin. 

The point of instability seems to depend on how close to the Nyquist limit the critical 

frequencies are. The 1 kHz filter just discussed goes unstable at N=22, but the 7 kHz filter 

has good performance at N=32. (They have the same sampling rate, 20,000 samples/s.) If we 

keep the same sampling rate but drop the bandwidth to 50 Hz, then we already get 

unacceptable ripple at N=8. (Although N=7 works.) The reason is easy to see: with N=8, the 

sum of denominator coefficients is only 1.9 × 10−15. That sum varies a lot with N. 

For the same 50 Hz filter, but with a sampling rate of only 800 samples/s, we can go all the 

way up to N=20 with satisfactory results. In this case the sum of denominator coefficients is 

7.9 × 10−10. 

It appears, then, that non-ideal behaviour and instability both have the same cause: 

denominator coefficients whose sum is too close to zero. This, in turn, is affected by the 

choice of sampling rate. If the sampling rate is too high, the accuracy suffers, which limits 

how high a filter order we can choose. If it is too low, our operating frequencies can go too 

close to the Nyquist frequency. The system designer must steer a path between these 

extremes. 

The filter order and the sampling rate are, of course, also constrained by the available 

processor time. This depends not only on which processor is chosen, but also on what other 

software is running. (Typically the filtering is only a small part of the processing.) Good 

analysis tools can work out how to allocate the time/sample, but ultimately we have to rely on 

trial and error to work out how much time is available. 

10. Conclusions 

The only really novel idea in this report is the suggestion that a large part of the filter design 

can be done during the initialisation phase of a real-time system. Traditionally all of the filter 

design work is done off-line, with the parameters then copied into the real-time code. The 



Software implementation of digital filters 
 

 

page 17 of 17 

copying is error-prone, and, we assert, not necessary. The processor time needed to do the 

calculations is small enough to fit easily into a few milliseconds of the initialisation code. 

All of the algorithms here can be derived from information freely available on the web. 

Unfortunately, most web sources give a general overview without the details, leaving the 

reader with a great deal of algebra to do. It is hoped that this report will fill those gaps. 

An unresolved problem, where further research is desirable, is why the gain of higher-order 

filters start looking like the response of first-order filters once we are well into the stopband. 

An answer to this question would require a good model of how rounding errors affect a 

calculation. 

The software for the algorithms described here are available for download [Moy17]. 

. 

References 

[Bilin] Bilinear transform, https://en.wikipedia.org/wiki/Bilinear_transform 

[But] Butterworth filter, https://en.wikipedia.org/wiki/Butterworth_filter  

[Dec] Decimation (signal processing), 

https://en.wikipedia.org/wiki/Decimation_(signal_processing). 

[Moy17] Filter software package, ftp://ftp.pmoylan.org/software/filters.zip 

[Nyq] Nyquist/Shannon Sampling Theorem, https://en.wikipedia.org/wiki/Nyquist-

Shannon_sampling_theorem.  

 

https://en.wikipedia.org/wiki/Bilinear_transform
https://en.wikipedia.org/wiki/Decimation_(signal_processing)

