
page 1 of 10

QR factorisation and pseudoinverse of rank-

deficient matrices

Peter Moylan

Glendale, NSW

peter@pmoylan.org http://www.pmoylan.org

April 2016

ABSTRACT: Standard algorithms for QR decomposition assume

that the matrix in question has full rank. We present an

alternative that can, without pivoting, handle the rank-deficient

case, and that produces an 𝑹 matrix that has linearly independent

rows. One application of this approach is the efficient calculation

of pseudoinverses.

1. Introduction

The QR factorisation of a (real or complex) 𝑚 × 𝑛 matrix 𝐴 is defined to be the

decomposition

𝐴 = 𝑄𝑅

where 𝑄 has the property 𝑄∗𝑄 = 𝐼, and 𝑅 is a (not necessarily square) upper triangular

matrix. Here, the superscript star indicates the adjoint (complex conjugate transpose) of a

matrix. The size of the matrices is not specified, except to the extent that the matrix product

must make sense. In practice there are three important ways of defining a QR factorisation.

In the traditional definition 𝑄 is an 𝑚 × 𝑚 unitary matrix (𝑄∗𝑄 = 𝑄𝑄∗ = 𝐼), and 𝑅 is an 𝑚 ×
𝑛 upper triangular matrix. This is called the full QR decomposition. It turns out, however,

that some of the most useful applications of QR factorisation are when 𝑚 ≫ 𝑛. In such cases

the traditional definition leads to unreasonably large matrices.

If 𝑚 > 𝑛, the traditional factorisation has the form

𝐴 = [𝑄1 𝑄2] [
𝑅1

0
] = 𝑄1𝑅1

where 𝑄1 still has the property 𝑄1
∗𝑄1 = 𝐼, and 𝑅1 is still upper triangular. Now 𝑄1 is 𝑚 × 𝑛

and 𝑅1 is 𝑛 × 𝑛. In this case we choose to say that the pair (𝑄1,𝑅1) is still a QR factorisation

of 𝐴, one that is computationally more convenient because the matrices are smaller. Because

𝑄1 is not square it is technically not unitary, but for our purposes that does not matter. In the

literature this is called the thin QR factorisation or the reduced QR factorisation. It is unique

if 𝐴 has full column rank and we restrict attention to those solutions where the diagonal

elements of 𝑅1 are positive. Obviously 𝑄2 is not unique, but that does not matter because we

have no interest in computing 𝑄2.

mailto:peter@pmoylan.org
http://www.pmoylan.org/

QR factorisation and pseudoinverse of rank-deficient matrices

page 2 of 10

The goal of the present paper is to present an algorithm that can also handle rank-deficient

matrices. Specifically, we will find a factorisation where the number of rows of 𝑅 is equal to

the rank of 𝐴. Clearly, no smaller decomposition is possible, so we will call this the minimal

or fully reduced QR factorisation.

Our approach is not the same as in rank-revealing QR factorisations, see e.g. [Ming96].

Those use a modified full or thin QR factorisation, and then look at the 𝑅 matrix to look for a

small or zero subblock. The goal in the present paper is not to generate the negligible part of

𝑅 at all. This give computational savings, and also ensures that the rows of 𝑅 are linearly

independent.

One motivation for using a QR factorisation is that triangular matrices are easy to invert. This

does not appear to help in the rank-deficient case, but for some applications it turns out that a

pseudoinverse can be used instead of an inverse. For this reason, we show at the end of the

paper how to computer a pseudoinverse, cheaply, using the minimal QR factorisation as an

intermediate step.

2. Existence and uniqueness of a minimal QR decomposition

In this section we prove the existence and uniqueness of a specified kind of fully reduced QR

factorisation. In general a QR factorisation is not unique, but it becomes unique once we add

some constraints.

Definition: An upper triangular matrix is in fully reduced row echelon form if it has no all-

zero rows, if the first nonzero element in each row is real and positive, and if that first

nonzero element lies strictly to the right of the first nonzero element of the row above it.

Clearly, such a matrix has linearly independent rows. In other words, the number of rows is

equal to its rank. Note that the “no all-zero rows” condition implies that it also has at least as

many columns as rows.

In what follows we will sometimes need the matrix 𝐴 to be nonzero, so we should first

dispose of the case 𝐴 = 0. In that case the decomposition is non-unique, but one solution is

𝑄 = [

1
0
⋮
0

] 𝑅 = [0 0 ⋯ 0]

This is, strictly speaking, not a minimal decomposition (since 𝐴 has rank 0 and 𝑅 has one

row), but it is the best we can do.

For any nonzero 𝐴, we have the following result.

Theorem. Any nonzero real or complex matrix 𝐴 has a unique decomposition 𝐴 = 𝑄𝑅 with

the properties that 𝑅 is in fully reduced row echelon form, and 𝑄∗𝑄 = 𝐼.

Proof. We proceed by induction on the number of columns of 𝐴. If 𝐴 is nonzero and has only

one column, the result is obvious by inspection. (𝑅 is then a 1 × 1 matrix.) Otherwise, let 𝑎1

be the first column of 𝐴, so that

𝐴 = [𝑎1 𝐴2]

QR factorisation and pseudoinverse of rank-deficient matrices

page 3 of 10

If 𝑎1 = 0, then by assumption 𝐴2 ≠ 0, and 𝐴2 has fewer columns than 𝐴. By the inductive

hypotheses, there exists a unique factorisation 𝐴2 = 𝑄2𝑅2 with 𝑄2 and 𝑅2 in the required

form. Then we have

𝐴 = [0 𝑄2𝑅2] = 𝑄2[0 𝑅2]

This satisfies the requirements of the theorem statement.

If 𝑎1 ≠ 0, any 𝑄𝑅 factorisation, if it exists, necessarily has the form

𝐴 = [𝑎1 𝐴2] = [𝑞1 𝑄2] [
𝑟1 𝑟𝑎

0 𝑅2
] = [𝑞1𝑟1 𝑞1𝑟𝑎 + 𝑄2𝑅2]

where 𝑞1 is the first column of 𝑄 and 𝑟1 is a scalar. The fact that 𝑄∗𝑄 = 𝐼 means that 𝑞1
∗𝑞1 =

1 and 𝑞1
∗𝑄2 = 0 and 𝑄2

∗𝑄2 = 𝐼. This implies

𝑟1 = √𝑎1
∗𝑎1 𝑞1 =

1

𝑟1
𝑎1

and these values are unique because of the constraint that 𝑟1 be real and positive. There are

now two subcases to consider. For reasons that will become clear below, define

𝑟𝑎 = 𝑞1
∗𝐴2 𝐴2𝑛𝑒𝑤 = 𝐴2 − 𝑞1𝑟𝑎

If 𝐴2𝑛𝑒𝑤 = 0 (which, it is easy to show, occurs iff 𝐴 has rank 1), we have

𝐴 = [𝑎1 𝐴2] = [𝑞1𝑟1 𝑞1𝑟𝑎] = 𝑞1[𝑟1 𝑟𝑎]

Observe that in this case the 𝑅 matrix has a single row, which is trivially in row echelon

form. This solution is unique, because any other 𝑄𝑅 factorisation would have more rows in 𝑅

than the rank of 𝐴.

Finally, consider the general case where 𝑎1 ≠ 0 and 𝐴2𝑛𝑒𝑤 ≠ 0. By the inductive hypothesis,

and the fact that 𝐴2𝑛𝑒𝑤 has fewer columns than 𝐴, there exist unique matrices 𝑄2 and 𝑅2 such

that 𝐴2𝑛𝑒𝑤 = 𝑄2𝑅2, 𝑄2
∗𝑄2 = 𝐼, and 𝑅2 is in fully reduced row echelon form. Define

𝑄 = [𝑞1 𝑄2] 𝑅 = [
𝑟1 𝑟𝑎

0 𝑅2
]

Then

𝑄𝑅 = [𝑞1 𝑄2] [
𝑟1 𝑟𝑎

0 𝑅2
] = [𝑞1𝑟1 𝑞1𝑟𝑎 + 𝐴2𝑛𝑒𝑤] = [𝑎1 𝐴2] = 𝐴

Clearly 𝑅 has the desired properties, so it only remains to be shown that 𝑄∗𝑄 = 𝐼. By

construction, 𝑞1
∗𝑞1 = 1 and 𝑄2

∗𝑄2 = 𝐼, so only the cross product is in question. Observe that

𝑞1
∗𝑄2𝑅2 = 𝑞1

∗𝐴2 − 𝑞1
∗𝑞1𝑟𝑎 = 𝑞1

∗𝐴2 − 𝑟𝑎 = 0

and 𝑞1
∗𝑄2 = 0 follows because the rows of 𝑅2 are linearly independent. □

3. A practical implementation

The proof in the last section is a constructive one, so to turn it into software we need only

copy the steps of the proof. The result appears to be a recursive algorithm, but in practice no

recursion is involved: we are simply stepping through the columns of 𝐴, at the same time

filling in columns of 𝑄 and rows and columns of 𝑅, and modifying the remaining columns of

𝐴. The calculation is complete when we have finished processing either the last row or the

last column of the modified 𝐴.

QR factorisation and pseudoinverse of rank-deficient matrices

page 4 of 10

Pivoting can be added to the algorithm, if desired. The only change this requires is to find, at

each step, the largest of the columns not yet processed, and if necessary to swap that with the

current column. This, however, does mean that the factorisation now has the form 𝐴𝛱 = 𝑄𝑅

or equivalently 𝐴 = 𝑄𝑅𝛱𝑇, where 𝛱 is a permutation matrix. Depending on the application,

this might not be desirable, because 𝑅𝛱𝑇 will not be a triangular matrix.

Note that the special case 𝐴2𝑛𝑒𝑤 = 0 does not require any special handling, other than

detecting that that matrix is zero. At that point in the calculation 𝑟1 and 𝑟𝑎 have already had

their values assigned, so all that remains to be done is to exit from the calculation loop.

Let 𝐴 be an 𝑚 × 𝑛 matrix. The fully reduced decomposition is most beneficial when 𝑚 ≫ 𝑛,

but it is also valid for the case 𝑚 ≤ 𝑛. We start the calculation by implicitly assuming that 𝑅

has min(𝑚, 𝑛) rows, but we omit one or more rows each time we meet a special case (𝑎1 = 0

or 𝐴2𝑛𝑒𝑤 = 0). This does imply discarding partial rows of 𝑅 that we have set in previous

steps, but no information is lost, because the discarded entries are merely some of the zero

entries below the main diagonal.

An in-place calculation is possible, where each column of 𝑄 that we calculate replaces a

column of 𝐴. If we are doing an in-place calculation, we need to watch out for one detail. In

the case 𝑎1 = 0, where we step to the next column of 𝐴 without adding a column to 𝑄, we

might have to be prepared to shift the remainder of 𝐴 one column left. Alternatively, and

perhaps more efficiently, we just need to keep track of the fact that the current column of 𝑄 is

not necessarily the same as the current column of 𝐴.

4. QR decomposition using Householder reflections

It is commonly stated that a QR decomposition via Householder reflections has better

numerical stability than the modified Gram-Schmidt process already described. We are

therefore motivated to see whether the Householder approach can be modified to produce a

minimal decomposition.

As shown in Appendix 2, a Householder transformation 𝐻 can act on a vector 𝑥 to produce

𝐻𝑥 = [

𝛼
0
⋮
0

]

where 𝛼 is a scalar. If 𝑥 is the first column of an 𝑚 × 𝑛 matrix 𝐴, then we have

𝐻𝐴 = [
𝛼 𝑟𝑎

0 𝑅2
]

which is the first step towards producing an upper triangular matrix. Repeating this operation

on smaller and smaller submatrices, we get

𝐻𝑛𝐻𝑛−1 … 𝐻2𝐻1𝐴 = 𝑅

and therefore

𝐴 = 𝑄𝑅

where

𝑄 = 𝐻1
∗𝐻2

∗ … 𝐻𝑛
∗

QR factorisation and pseudoinverse of rank-deficient matrices

page 5 of 10

Observe that 𝑄 is an 𝑚 × 𝑚 matrix. That means that, regardless of the rank of 𝐴, we have a

full QR decomposition, which is not really acceptable if 𝑚 ≫ 𝑛. In this case, the last 𝑚 − 𝑛

rows of 𝑅 are zero, so we can get a thin QR decomposition by deleting the last 𝑚 − 𝑛

columns of 𝑄.

This, unfortunately, does not translate into deleting rows or columns of the Householder

matrices 𝐻𝑖. We have no alternative but to retain an 𝑚 × 𝑚 matrix 𝑄 until the end of the

calculation; only at the end can we discard the redundant columns. For a long thin matrix 𝐴,

this can create serious storage problems.

But can we modify the Householder approach to get a minimal factorisation? Luckily, we

can. Partway through the calculation, we have

𝐴 = 𝑄𝑖𝑅𝑖 = 𝑄𝑖 [
𝑅1 𝑅𝑎

0 𝑅22
]

Uniqueness of the solution for 𝑅 means that 𝑅1 and 𝑅𝑎 are precisely the matrices obtained by

our Section 2 calculations. That means that we can use the Section 2 insights to work out how

to modify the Householder approach to produce a minimal decomposition.

Let the upper left corner of 𝑅22 be at row and column (𝑟0, 𝑐0). In the full-rank case we have

𝑟0 = 𝑐0, but for our algorithm this is no longer true. From Section 2 we know that we have to

deal with two special cases:

(a) If the first column of 𝑅22 is zero, then we should increment 𝑐0 without incrementing

𝑟0 for the next step.

(b) Otherwise, if the updated 𝑅22 is zero, then we have finished the calculation.

It turns out that we do not need to check for case (b). If the case (b) condition is satisfied,

then on the following iterations we will immediately run into case (a), so the calculations will

be terminated in any case. Whether we do this check is purely a matter of software efficiency,

and does not affect the final answer.

So does the Householder approach give a more accurate answer? If running a test suite, we

should check 𝐴 − 𝑄𝑅 (which should be zero), and 𝑄∗𝑄 − 𝐼 (which should be zero). Our tests

on random matrices shows that the Householder approach gives better values of 𝑄∗𝑄 − 𝐼, but

worse values of 𝐴 − 𝑄𝑅. In other words, the Householder approach is better at producing

orthogonal columns of the 𝑄 matrix, but is not as good at producing a QR factorisation. If our

goal is to produce a good 𝑅 matrix, then the Householder approach is less desirable.

5. LQ decomposition

An LQ decomposition of a matrix 𝐴 has the form

𝐴 = 𝐿𝑄

where 𝐿 is lower triangular and 𝑄 has the property that 𝑄𝑄∗ = 𝐼. As in the QR case, we can

have full, thin, or fully reduced version. The details are exactly as in the QR case, except that

we swap the labelling of rows and columns.

QR factorisation and pseudoinverse of rank-deficient matrices

page 6 of 10

6. Pseudoinverses

A pseudoinverse calculation is typically done via a singular value decomposition [SVD], but

this is computationally expensive. In this section we show that the minimal 𝑄𝑅

decomposition can be used as a computationally cheap way to compute the result. The

pseudoinverse (Moore-Penrose inverse) 𝑀# of a real or complex matrix 𝑀 is defined

uniquely by the properties [Pen55]:

 𝑀#𝑀 and 𝑀𝑀# are both Hermitian

 𝑀𝑀#𝑀 = 𝑀

 𝑀#𝑀𝑀# = 𝑀#

The pseudoinverse arises in connection with solving equations like

𝑀𝑥 = 𝑏

The “solution” 𝑥 = 𝑀#𝑏 has the properties

1. If one or more exact solutions exist, then the given solution is the one of least norm.

2. If no exact solution exists, then the pseudoinverse “solution” is the one that comes

closest to being a solution in that it minimises ‖𝑀𝑥 − 𝑏‖.

3. If 𝑀 is invertible then 𝑀# = 𝑀−1.

The following properties can be confirmed by substitution into the above conditions for a

pseudoinverse.

 The operation of taking the Hermitian (complex conjugate transpose) of a matrix

commutes with the pseudoinverse operation. That is, (𝑀∗)# = (𝑀#)∗.

 If 𝑀 has full column rank, then 𝑀# = (𝑀∗𝑀)−1𝑀∗.

 If 𝑀 has full row rank, then 𝑀# = 𝑀∗(𝑀𝑀∗)−1.

7. Calculating the pseudoinverse

As always, we need to assume that we are dealing with nonzero matrices. The pseudoinverse

of an all-zero matrix is equal to its transpose, but we have to separate this out as a special

case.

Let 𝐴 = 𝑄𝑅, where 𝑄∗𝑄 = 𝐼. Then it is easily shown, directly from the definition of a

pseudoinverse, that 𝐴# = 𝑅#𝑄∗. (There is no similar result for an arbitrary matrix product.)

That leaves us with the problem of computing 𝑅#. Because of the way we do the

decomposition, 𝑅 has full row rank and is upper triangular.

If that 𝑅 is square, it is nonsingular, so the pseudoinverse is equal to the inverse. Calculating

the inverse of an upper triangular matrix is a well-known low-cost algorithm.

More generally, if 𝐴 is 𝑚 × 𝑛 and has rank 𝑞, then 𝑅 is 𝑞 × 𝑛. If 𝑞 < 𝑛 then the “upper

triangular” property turns out to be of no help, because the pseudoinverse of a non-square

upper triangular matrix is usually not a triangular matrix. However, the full rank property

means that

𝑅# = 𝑅∗(𝑅𝑅∗)−1

At first sight, this appears to complicate matters by requiring us to calculate a full matrix

inverse. The matrix 𝑅𝑅∗ is Hermitian, and the usual recommended way of inverting an

QR factorisation and pseudoinverse of rank-deficient matrices

page 7 of 10

Hermitian matrix is via the Cholesky decomposition [Cho]. A Cholesky decomposition works

by factoring the matrix in a certain way. Below, we show a cheaper method.

Suppose we do a QR factorisation of the 𝑛 × 𝑞 matrix 𝑅∗. The result is

𝑅∗ = 𝑄1𝑅1

where 𝑅1 is now a square 𝑞 × 𝑞 upper triangular matrix, and 𝑄1 is 𝑛 × 𝑞, i.e. it has more

rows than columns. Then

(𝑅𝑅∗)−1 = (𝑅1
∗𝑄1

∗𝑄1𝑅1)−1 = (𝑅1
∗𝑅1)−1 = 𝑅1

−1(𝑅1
−1)∗

𝑅# = 𝑅∗(𝑅𝑅∗)−1 = 𝑄1𝑅1𝑅1
−1(𝑅1

−1)∗ = 𝑄1(𝑅1
−1)∗

This is a significant gain, because now the only inversion we have to deal with is the

inversion of a triangular matrix. The cost is that we have had to do a new QR factorisation,

but this is still cheaper than doing a full matrix inversion.

The conclusion is that we can calculate the pseudoinverse of any arbitrary matrix using at

most two QR factorisations and inverting a triangular matrix (which is easy). This appears to

be computationally more efficient than, for example, using a singular value decomposition.

Computational accuracy can be improved by using pivoting in the course of the 𝑄𝑅

calculation. This is a minor change to the calculation, and results in finding a permutation

matrix 𝛱 such that 𝐴𝛱 = 𝑄𝑅. With this change, we have 𝐴 = 𝑄𝑅𝛱𝑇 and 𝐴# = 𝛱𝑅#𝑄∗. That

is, it is the same calculation plus a final permutation.

8. Relationship to singular value decomposition

It is not hard to see that the method just described is effectively a QR decomposition followed

by an LQ decomposition, and in fact we can save one adjoint calculation by doing it that way.

If we have a factorisation 𝐴 = 𝑃𝐿𝑄, where 𝑃∗𝑃 = 𝐼 and 𝑄𝑄∗ = 𝐼 and 𝐿 is lower triangular,

then it is easy to show that 𝐴# = 𝑄∗𝐿−1𝑃∗.

If our goal is to compute a pseudoinverse then we need go no further, because the triangular

matrix 𝐿 is easy to invert. If, however, we choose to do a similar decomposition of 𝐿, we get

a sequence of factorisations

𝐴 = 𝑃𝑖𝐿𝑖𝑄𝑖

where each 𝐿𝑖 is the result of doing a PLQ decomposition of 𝐿𝑖−1. It turns out that at each

step 𝐿𝑖 is “more diagonal” than its predecessor, in the sense that the off-diagonal elements are

becoming smaller, so that eventually we converge towards a diagonal 𝐿𝑖.

This is, in fact, a known algorithm for finding a singular value decomposition, although not

the most efficient [SVD]. We do, however, depart from the usual definition in the following

way. If 𝐴 is 𝑚 × 𝑛 and has rank 𝑞, then according to the conventional approach it has

min (𝑚, 𝑛) singular values, of which 𝑞 are nonzero. Because we are using minimal QR and

LQ decompositions, instead of the more usual thin decompositions, our 𝐿𝑖 are nonsingular at

every step. As a result, we calculate only the nonzero singular values. Of course, no

information is lost, because we know that the missing ones are all zero. We can restore them,

if this is really necessary, by adding zero rows and/or columns to 𝐿, and padding the 𝑃 and 𝑄

matrices with extra blocks that, because they are multiplied by zero, have no effect on the

product. For most applications this will not be necessary, because the positive singular values

are the interesting ones.

QR factorisation and pseudoinverse of rank-deficient matrices

page 8 of 10

9. Conclusions

It is possible, with a fairly simple change to the conventional Gram-Schmidt approach, to do

a QR decomposition where the 𝑅 matrix is guaranteed to have full row rank. One

consequence of this is that we can calculate pseudoinverses far more efficiently than by using

a singular value decomposition.

The software for the algorithms described here are available for download [Moy16].

AUTHOR’S NOTE: As a retired academic I have no access to on-line research journals, so

cannot find out which parts of this paper, if any, are original. I gather that some universities

let retired staff retain their library privileges, but that is not the case for my university. I

apologise for the poor referencing.

References

[Cho] Cholesky Decomposition, https://en.wikipedia.org/wiki/Cholesky_decomposition

[Ming96] Ming Gu and Stanley C. Eisenstat, “Efficient algorithms for computing a strong

rank-revealing QR factorisation, SIAM J Sci. Comput. 17 (4), 848-868, July 1996.

[Moy16] P.J. Moylan, Numerical Analysis Software,

http://pmoylan.org/pages/m2/NumAnal.html

[Pen55] R. Penrose, “A generalized inverse for matrices”, Mathematical Proceedings of the

Cambridge Philosophical Society, 51, pp 406-413, 1955.

doi:10.1017/S0305004100030401.

[SVD] Singular Value Decomposition,

https://en.wikipedia.org/wiki/Singular_value_decomposition

http://pmoylan.org/pages/m2/NumAnal.html

QR factorisation and pseudoinverse of rank-deficient matrices

page 9 of 10

Appendix 1: Inversion of triangular matrices

The following results are well-known, but are collected here for convenience.

For a partitioned upper triangular (and nonsingular) matrix, the equation [
𝐴 𝐵
0 𝐶

] [
𝐷 𝐸
𝐹 𝐺

] =

[
𝐼 0
0 𝐼

] expands to [
𝐴𝐷 + 𝐵𝐹 𝐴𝐸 + 𝐵𝐺

𝐶𝐹 𝐶𝐺
] = [

𝐼 0
0 𝐼

], which implies 𝐺 = 𝐶−1 and 𝐹 = 0.

From this observation, there is an obvious inductive argument that shows that the inverse (if

it exists) of an upper triangular matrix is itself upper triangular, and the diagonal elements of

the inverse are the reciprocals of the corresponding diagonal elements of the original matrix.

Let 𝑅 be an upper triangular matrix, and let 𝑆 be its inverse. The property 𝑆𝑅 = 𝐼 expands out

to

(𝑆𝑅)𝑖𝑗 = ∑ 𝑆𝑖𝑘𝑅𝑘𝑗

𝑁

𝑘=1

= 𝛿𝑖𝑗

and because we know that some of the terms are zero, this reduces to

∑ 𝑆𝑖𝑘𝑅𝑘𝑗

𝑗

𝑘=𝑖

= 𝛿𝑖𝑗

For row 𝑖, we already know that 𝑆𝑖𝑖 = 1 𝑅𝑖𝑖⁄ and that 𝑆𝑖𝑗 = 0 for all 𝑗 < 𝑖. For 𝑗 > 𝑖,

𝑆𝑖𝑗𝑅𝑗𝑗 + ∑ 𝑆𝑖𝑘𝑅𝑘𝑗

𝑗−1

𝑘=𝑖

= 0

or

𝑆𝑖𝑗 = −
1

𝑅𝑗𝑗
∑ 𝑆𝑖𝑘𝑅𝑘𝑗

𝑗−1

𝑘=𝑖

If we move from left to right through the array, the right side of this equation involves only

quantities we have already calculated.

An alternative approach, starting from the equation 𝑅𝑆 = 𝐼, leads to the formula

𝑆𝑖𝑗 = −
1

𝑅𝑖𝑖
∑ 𝑅𝑖𝑘𝑆𝑘𝑗

𝑗

𝑘=𝑖+1

for 𝑗 > 𝑖, which is appropriate if we want to move backwards through the rows. These two

methods are of equal complexity and apparently equal accuracy, so either method should

work equally well.

The results for a lower triangular matrix are similar. If 𝐿 is a nonsingular lower triangular

matrix and 𝑀 is its inverse, then 𝑀 is also lower triangular, with

𝑀𝑖𝑖 =
1

𝐿𝑖𝑖

and

QR factorisation and pseudoinverse of rank-deficient matrices

page 10 of 10

𝑀𝑖𝑗 = −
1

𝐿𝑖𝑖
∑ 𝐿𝑖𝑘𝑀𝑘𝑗

𝑖−1

𝑘=𝑗

for 𝑖 > 𝑗. This is in a form suitable for working through the rows from first to last. There is a

second formula which also works, but is less convenient because it requires working

backwards through the columns.

Appendix 2: Householder transformations

This is again known material, but it is included here because most of the available references

cover only the case of real matrices, and the extension to the complex case is not entirely

obvious.

A Householder transformation on a matrix is multiplication on the left by a matrix

𝐻 = 𝐼 − 𝛾𝑣𝑣∗

where 𝛾 is a real or complex scalar and 𝑣 is a unit-norm vector (𝑣∗𝑣 = 1). It is easy to show

that 𝐻∗𝐻 = 𝐻𝐻∗ = 𝐼 iff 𝛾 = 1 + 𝛽, where 𝛽 is a real or complex number such that |𝛽| = 1.

In the real case the only possible choices are 𝛾 = 0 (meaning no change) or 𝛾 = 2. In the

complex case the choice of 𝛾 is a little trickier.

The property 𝐻∗𝐻 = 𝐼 implies that ‖𝐻𝑥‖ = ‖𝑥‖ for any vector 𝑥. This says that by suitable

choice of 𝐻 we can rotate or reflect the vector, but we cannot change its size. In the context

of QR calculations, we are interested in producing the result 𝐻𝑥 = 𝛼𝑦, where 𝑦 is a unit

vector. In matrix notation, that means a vector with 1 in its first position and zero entries

elsewhere. The norm-preserving property implies that |𝛼| = ‖𝑥‖, which fixes the magnitude

of the scalar 𝛼 but not its phase. For our application there is no freedom of choice in the

phase either. If we are using the Householder transformation to do a QR factorisation, then 𝛼

must be real and nonnegative. This forces the choice 𝛼 = ‖𝑥‖.

Geometrical considerations suggest that we should choose 𝑣 = 𝑢 ‖𝑢‖⁄ , where

𝑢 = 𝑥 − 𝛼𝑦

Then

𝐻𝑥 = 𝑥 − 𝛾𝑣𝑣∗𝑥 = 𝑥 −
𝛾𝑢∗𝑥

‖𝑢‖2
𝑢 = 𝑥 −

𝑢∗𝑥 + 𝛽𝑢∗𝑥

‖𝑢‖2
𝑢

The result that we want is 𝐻𝑥 = 𝛼𝑦 = 𝑥 − 𝑢, which requires that

𝑢∗𝑥 + 𝛽𝑢∗𝑥 = ‖𝑢‖2

and a short calculation reduces this to

𝛽 =
𝑥∗𝑢

𝑢∗𝑥

This is all we need to complete the calculation.

