
������� ���� ����������� �������

�������

���� ��������

��������������� ���
���

����� �,4) +�� �����
$05�� ����� �(##)$0,+

�$"'+(")� �$-,.0� �����	

�"0,!$.� ����

�$- .0*$+0� ,%� �)$"0.(")� +#� �,*-10$.

�+&(+$$.(+&

�'$� �+(2$./(04� ,%� �$3" /0)$

������� ���
�� �1/0.)(

 – 1 –

��
� ��������� ������
���	��
� ���
�
�

����� �(0%�'�� ��
��
 ,1�� ����� �$��% ,('

�)�*,& ',� (!�
% �,*$��%� �'�� �(&)-, *�
'"$' *$'"

�# � �'$. *+$,0� (!� � /��+,%

������� ������ 	-+,*�%$�

peter@ee.newcastle.edu.au
reb@ee.newcastle.edu.au
rick@ee.newcastle.edu.au

Fax: +61 49 60 1712

	�+,*��,

In software systems using preemptive scheduling based on task priorities, it is
desirable to include a priority inheritance mechanism. This is an arrangement by
which a task’s priority is temporarily increased when it is blocking a task of higher
priority. Although it is easy to work out when and how to increase a task’s priority,
the subsequent reduction of that task’s priority involves some hidden traps. It will
be shown that the “obvious” solutions are flawed, in that they can reduce the
priority either too early or too late.

This paper gives two classes of solutions: one for the case where time-slicing is
allowed, and one where it is not. It turns out that prohibiting time-slicing among
tasks of equal priority has a major impact on the theoretical results, but does not
result in major changes in terms of implementation algorithms.

Keywords: Priority inheritance, scheduling, real-time systems.

�� �',*(�-�,$('

In software systems which used preemptive
scheduling based on task priorities, it is by now
well known that critical section protection can
create a problem of unbounded priority
inversion, where a high-priority task can be
delayed for unreasonable amounts of time while
waiting to enter a critical section. The problem
occurs when (a) a low-priority task is inside a
critical section; (b) as the result of an external
interrupt, a high-priority task runs; (c) the
high-priority task is blocked trying to enter a
critical section guarded by the same lock; and
(d) the low-priority task does not run because
there are some intermediate-priority tasks also
able to run.

An obvious solution to this problem is to use
priority inheritance, where the priority of a task
can be temporarily raised to reflect the priority
of any higher-priority task which it is blocking.
That is, if task T2 is blocked by task T1, and T2
has a higher priority than T1, then the priority of
T1 is raised to that of T2 until such time as T1 is
no longer blocking T2. This ensures that T2
cannot be further delayed by tasks of
intermediate priority.

Although this sounds simple, attractive, and
easy to implement, there are some hidden traps.
The most difficult implementation problem is
what we will call the disinheritance problem:
given that a task has had its priority temporarily
increased, when do we lower the priority again;
and to what level do we lower it? The goal of

 – 2 –

this paper is to demonstrate why this is a
problem, and to indicate solutions.

Let us consider three potential approaches to the
disinheritance problem:

Strategy 1. Ensure that a task’s priority is
always equal to the highest priority of any task
which it is (directly or indirectly) blocking.

Strategy 2. Demote a task, at the time it leaves a
critical section, to the priority it had when it
entered that critical section. This is the rule
given in [1], and we suspect – although
documentation on this point is hard to find –
that it is the solution adopted by the majority of
implementers. This is relatively easy to
implement, since the task’s old priority can be
stored in the lock; but it has a tendency to drop
a task’s priority too soon.

Strategy 3. Restore a task to its normal priority
as it leaves the outermost of nested critical
sections. This strategy is obviously too
conservative, in that it sometimes leaves the
task’s priority high for too long; but it is
somewhat safer than strategy 2.

Strategy 1 is, of course, the most accurate
interpretation of pure priority inheritance. As
will be shown in section 3, strategies 1 and 2 are
not equivalent; and in fact strategy 2 is an
unsatisfactory rule, in that it can lead to
high-priority tasks being blocked for significant
periods of time.

As it happens, reference [1] is mainly concerned
with an inheritance mechanism known as the
Priority Ceiling Protocol [2], for which the
disinheritance problem appears to be simpler.
Our concern in this paper is for (a modified
version of) what [1] calls the Basic Inheritance
Protocol. The difference between the two is that
the Priority Ceiling Protocol has rather more
stringent conditions for allowing a task to obtain
a lock; this makes it safer, but sometimes overly
cautious.

We have, incidentally, been unable to find
significant performance differences between the
Priority Ceiling Protocol and the basic
inheritance mechanism studied in the present
paper. There are examples where the former has
better performance, and other examples where
the latter is better, but no consistent trend has
emerged. The basic inheritance method is a little
easier to implement, and seems to have less

“system overhead” than the Priority Ceiling
Protocol; but even in that respect the differences
are minor in terms of performance.

�� �	���
��	�� �
�� �����

Suppose that binary semaphores are used as the
task blocking mechanism. (This is an inessential
assumption, but it helps to keep the terminology
more concrete.) Ideally, any P() operation on a
semaphore should raise the priority of the task
which is going to execute the corresponding
V(), unless of course its priority is already high
enough. In practice, nobody has yet come up
with a reasonable method of identifying that
other task, especially where there are several
potential sources of the V()1, so that the general
priority inheritance problem remains unsolved.

The one situation where a good inheritance
algorithm is possible is in the case where binary
semaphores are used to protect critical sections.
This is the case covered in this paper, and is also
what is handled by other approaches such as that
in [2]. To make this clear, let us define a lock as
a binary semaphore used only for critical section
protection. The term (general) semaphore is
then reserved for semaphores used for other
purposes (resource counters, intertask
synchronisation, and so on).

With this as background, a task can be in any of
the following states:

(a) Running: actually executing instructions
on the processor;

(b) Ready: able to run as soon as the processor
is available. To simplify the notation, we
also consider the running task to be a ready
task;

(c) Blocked: unable to run because it is
waiting to obtain a lock;

(d) Inactive: unable to run for some other
reason.

In practice, an inactive task is one which is not
competing for system resources because it is
held up on some resource other than a lock. For
the purposes of this paper, it is convenient to
depart slightly from standard terminology and
not use the term “blocked” for this case.

1Some results are possible for the special case of a
producer-consumer chain; but this is just one out
of several common cases.

 – 3 –

We shall at times use the phrases “entering the
system” and “leaving the system” to describe
tasks which leave and enter the inactive state,
respectively.

In the sequel, the following assumptions will be
needed.

Assumption 1. Inactive tasks do not hold any
locks.

Assumption 2. No task is ever deadlocked.

Both of these are conditions which must be
satisfied by the applications programmer. The
algorithms to be given in this paper do not
automatically prevent deadlock. They can, with
minor modifications, detect it.

�� �	� ����
��

Consider a system of four tasks T1, T2, T3, T4,
and two locks L13 and L14. As a mnemonic aid
(for this example only), the subscripts on the
locks show which tasks share those locks, and
the task subscripts show the task priorities.
Suppose that T1 executes the sequence of
operations

Obtain(L13)...Obtain(L14)
...Release(L14)...Release(L13)

and consider the following sequence of events.

(a) T1 is initially the only task able to run, and
it successfully enters both of its critical
sections;

(b) T3 arrives, runs, and is blocked on an
Obtain(L13). As a result, the priority of
T1 is increased to 3, and T1 continues to
run;

(c) T2 arrives, but does not run because T1 has
a higher priority;

(d) T4 arrives, runs, and is blocked on an
Obtain(L14). As a result, the priority of
T1 is increased to 4, and T1 continues to
run;

(e) T1 executes its Release(T14), thereby
unblocking T4. The priority of T1 also
drops at this point;

(f) T4 runs, and (as is typical for high-priority
tasks) quickly completes its execution.

This is illustrated in Figure 1. For each task, the
height of the graph represents its current
priority. Shaded sections indicate where the task
is unable to run, either because it is blocked or
because there is a higher-priority task in the
system.

The interesting question here is what happens
after (f). At this stage T4 is no longer wanting to
run, T3 is blocked by T1, and T2 and T1 are able
to run. Logically, T1 should run at this stage,
since it is blocking the highest-priority
remaining task. If, however, we adopt the
strategy of dropping the priority of a task, as it
leaves a critical section, to the priority it had on

Fig 1 – An example of priority inheritance

T1

T3

T4

(b)(a) (c) (d) (e)(f)

T2

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

 – 4 –

entry to that section, then the priority of T1 will
drop to 1 at that point – as shown by the dotted
line in the diagram – and T2 will run. This can
result in T3 being blocked for an unacceptably
long time.

This is for Strategy 2 of Section 1. If instead we
use Strategy 3, T1 will not drop its priority at
step (e), so that T4 is delayed until the
Release(L13). In either case, the results are
unacceptable.

The problem we must solve, then, is to find a
mechanism which allows any task which still
blocks a higher-priority task to continue to have
its inherited priority for as long as the blocking
persists – but not any longer than this.

�� �������	� ���
����� ��
��������

Since the “intuitively obvious” methods of
defining inheritance and disinheritance can lead
to undesired results, we need a more careful
definition of Priority Inheritance.

For obvious reasons, we assume preemptive
scheduling throughout this paper. This term has
the conventional meaning: if task T has a higher
(dynamic) priority than the currently running
task, then there is an immediate task switch to T
as soon as T enters the system, or becomes
unblocked, or obtains this higher priority, as
appropriate. Equivalently, a task can run only if
all higher-priority tasks are blocked or inactive.

Definition 1. The set �(T, t) is the set of all
tasks directly blocked by task T at time t.

Definition 2. The set �+(T, t) is the set of all
tasks directly or indirectly blocked by task T at
time t. That is, T1��+(T2,t) if T1��(T2,t) or
if T1��(T3,t) for some T3 ��+(T2,t).

Definition 3. The set �*(T, t) is the union of
�+(T, t) and the singleton set {T}.

The inclusion of T in the set �*(T, t) is not, of
course, intended to mean that T blocks itself.
This definition is primarily to simplify some
notation. As it happens, however, there is an
implementation advantage in acting as if T
blocks itself. It simplifies the decision as to
when the priority of T should be reduced to its
base priority.

Notation. A task T has two priorities: a base
priority BP(T), which is assigned by the
programmer, and a dynamic priority DP(T,t)
which is the priority used for all scheduling
decisions.

Definition 4. A preemptive scheduling method
is a Priority Inheritance method if scheduling is
based on the dynamic priority of a task given by
 DP(T,t) = max{BP(Tj), Tj��*(T,t)}

Let us represent blocking in the system by a
directed graph. Each node in the graph is a task,
and there is a link from T1 to T2 iff T2 is
directly blocked by T1. Clearly, we can find all
instances of indirect blocking by following the
links.

A cycle in the graph would indicate deadlock. If
we assume that there is no deadlock, then the
graph is a forest of trees. (Note: it is the
programmer’s responsibility to avoid deadlock;
the algorithms which we shall present in later
sections do not automatically prevent deadlock,
although they do allow deadlock to be detected.)
The root nodes of these trees are precisely the
ready or running tasks. �(T,t) is the set of
children of T, and �*(T,t) is the entire subtree
of which T is the root node.

Note that we say that a blocked task is blocked
on a lock and blocked by another task. In the
traditional implementation of binary
semaphores, the blocked-on information is used
(either explicitly or implicitly) and the
blocked-by information is discarded. When
priority inheritance is used, both sets of
information are potentially needed. The
blocked-on information tells us which task to
unblock when a lock becomes available, and the
blocked-by information allows us to propagate
the inherited priorities.

While the definition of blocked-on is clear
enough, the meaning of blocked-by needs more
thought. What do we mean by saying that task
T1 is blocked by task T2? In this paper, we take
it to mean that

(a) T1 is trying to obtain a lock L1, but is
prevented from doing so because T2 is
holding a lock L2, where either L2=L1 or
there is some policy in place (e.g. a
grouping of locks into equivalence classes)
which prevents T1 from obtaining L1 as
long as T2 holds L2;

 – 5 –

R4R3R2R1

Fig 2 – The ready list, with blocked tasks attached

R0

�
�

}

�

Ready
List

Blocked
Tasks

Running Ready

(b) T1 will be granted lock L1 when T1 is no
longer blocked by any task, and this
unblocking can happen only when the
blocking task releases a lock.

This description is still a little vague, because it
is describing a class of algorithms rather than
one explicit algorithm. To be more explicit, let
us consider some of the possibilities.

Policy 1. T1 is blocked by T2 if T2 holds the
lock which T1 is trying to obtain. This is the
“obvious” definition of the blocked-by relation,
but it is not necessarily the best.

Policy 2. T1 is blocked by T2 if (a) T2 holds the
lock L which T1 is trying to obtain, and T1 is at
the head of the list of tasks blocked on L; or
(b) T2 is the predecessor of T1 on the list of
tasks blocked on L.

Policy 3. T1 is blocked by T2 if (a) T2 holds the
lock L which T1 is trying to obtain, and T2 is a
ready or running task; or (b) the lock L is held
by a blocked task T3, and T3 is blocked by T2.

Policy 4. Suppose that we assign priorities to
locks as well as to tasks; let LP(L) denote the
(static) priority of lock L, as assigned by the
programmer. We can define T1 to be blocked by
T2 if (a) of all locks which are currently held by
any task, T2 holds the lock L of highest priority
LP(L); (b) T1 is attempting to obtain a lock (not
necessarily the same one); and (c) T1�T2, and
the dynamic priority of T1 is less than or equal
to LP(L).

Policies 1-3 are equivalent from the viewpoint
of the external caller, but are different in terms

of internal implementation. (They differ in
terms of precisely when a blocked task inherits a
new priority, but all three policies assign the
same priorities to all ready tasks.) Policy 2
minimises the width of the blocking trees, and
thereby directly identifies the task to be
unblocked when a lock is released. Policy 3, at
the other extreme, eliminates transitive blocking
by minimising the height of the blocking trees.

Policy 4 is different both internally and
externally from the others. Its distinctive feature
is that at any given time there is a unique
“blocker”; that is, all blocked tasks are blocked
by the same task. We conjecture that Policy 4 is
precisely equivalent to the Priority Ceiling
Protocol [1], but so far we have not found a
formal proof of this conjecture.2

One way to keep track of all active tasks in the
system is via a priority-ordered ready list, with
each ready task carrying along the tree of tasks
which it blocks. This is illustrated in Figure 2,
where R0 is the currently running task and R1,
R2, ... are the ready tasks. For convenience, we
picture the running task as being at the head of
the ready list. This might or might not be
reflected in the actual implementation.

2In principle, this equivalence should be easy to
prove. The difficulty lies in the use of different
specification methods. Our approach, via
Definition 4, is to specify the properties that an
implementation should have, and then to look for
possible implementations. The definition in [1] is
effectively an algorithmic definition, which leaves
us with the difficult problem of proving the
equivalence of two dissimilar algorithms.

 – 6 –

In the next section, we shall need the following
results.

Lemma 1. For any task T and time t,
DP(T,t)�BP(Ti) for all Ti��*(T,t).

Proof. Obvious from Definition 4.

Lemma 2. For any task T and time t there is a
task T1��*(T,t) with BP(T1)=DP(T,t).

Proof. This follows directly from Definition 4.

Theorem 1. The dynamic priority of the
running task is greater than or equal to that of
any other active task.

Proof. Let DP(T,t)=p, where T is the running
task; and suppose that there is some other task
T1 for which DP(T1,t)=q>p. Clearly T1 cannot
be a ready task, since then T could not have
been the running task, but we still have to
dispose of the possibility that T1 is a blocked
task.

From Lemma 2, there is a task T2��*(T1,t)
with BP(T2)=q. Let T3 be the root node of the
blocking tree containing T2. From Definition 4,
DP(T3,t)�q>p. That is, there exists a ready task
whose dynamic priority is greater than that of T,
which contradicts the hypothesis that T was the
running task.

Note that the proof of Theorem 1 explicitly
relies on the assumption that there is no
deadlock.

�� �� 	������� ��
������	� ��	����

In this section, we present a general solution to
the problem of keeping track of priorities. The
basic idea is to keep, for each task, a count of
the number of tasks it is directly blocking at
each priority level; and to remember, for each
lock, the priority of the task which is to be
unblocked when the lock becomes available.

The solution is general in that it makes only
weak assumptions about the ordering of the list
of ready tasks. Of course we always want that
list to be priority-ordered, but there is some
scope for varying the ordering of tasks of equal
priority. By not insisting that tasks of equal
priority be ordered in any particular way, we get

a solution which is suitable for systems which
use time-slicing among tasks of equal priority.
(This also goes part way towards providing a
solution for multiprocessor systems.) We also
make no assumption as to the ordering of tasks
on a blocked list; some implementers would
prefer the tasks to be priority-ordered, and some
would prefer a FIFO order.

In a later section, we shall show that simpler
and more efficient solutions are possible if we
make stronger assumptions about the ordering
of tasks of equal priority. Those assumptions
will, however, rule out the option of
time-slicing.

To compute the dynamic priority of a task, we
do not need to keep complete information about
the blocking trees; it suffices to count the
number of tasks in a tree at each priority level.
With each task T we can associate a set of
counts

 T.count1[j] = the number of tasks in �*(T,t)
whose base priority is j

From Definition 4, DP(T,t) is obviously the
largest j for which T.count1[j] is nonzero.
Unfortunately, T.count1[j] can be expensive to
compute. (When a task becomes blocked, it
might itself be blocking other tasks, so
potentially the entire count1 array has to be
propagated up the blocking tree.) We can save
some overhead by instead working with

 T.count2[j] = �(j,BP(T)) + (the number of
tasks in �(T,t) with dynamic priority j)

where �(i,j)=1 if i=j, and �(i,j)=0 otherwise. It is
easy to show, from Lemma 2, that T.count2[j]=0
if and only if T.count1[j]=0, so the count2 array
still encodes the information we need but is
easier to compute.

Since a task’s dynamic priority never drops
below its base priority, the counts need not be
accurate for j�BP(T). (In practice, however,
this observation does not seem to lead to any
simplifications.) Note that we have to initialise
T.count2[BP(T)] to 1 – that is, we create the
fiction that a task is blocked by itself.

Appendix A gives some pseudo-code based on
these ideas. The code appears to contain some
redundant computations; this is because
Appendix A actually describes a class of
algorithms, with some of the details left
unspecified. For example, one might expect that
T.BlockedBy is normally equal to

 – 7 –

T.BlockedOn.Holder for any blocked task T, but
in fact that is true only for Policy 1 of Section 4.
Similarly, we have left unspecified the detail of
which task to unblock when several tasks are
blocked on the same lock. After details such as
this are decided, a certain amount of “fine
tuning” of the code is possible.

The recursion in procedure Promote is, of
course, inessential, and is present only for
clarity. In practice we would replace the tail
recursion by a loop.

The code shown for the Release operation is
not completely general, since it relies on the
following assumption: if a task releases a lock,
and if one or more tasks were waiting for that
lock, then one of those tasks will obtain the
lock. This is true for Policies 1-3 of Section 4,
but it is not necessarily true for Policy 4. We
have chosen not to illustrate the completely
general case, on the grounds that this procedure
is already a complex one.

A non-obvious point in the Release operation
is the way the “blocked by” status of some tasks
changes when another task becomes unblocked.
Suppose that T1 holds a lock L, and it unblocks
T2 by releasing L: then all other tasks which
were blocked on L now become blocked by T2
instead of T1 – see Figure 3. (This diagram is
for the case of Policy 1 in Section 4; but similar
diagrams can be drawn for the other “blocked
by” definitions.) This operation could have been
simplified by the alternative approach of
unblocking all tasks blocked on L and then
forcing them to re-compete for the lock. It turns

out, however – see Section 6.4 – that that
approach causes redundant task switching,
thereby giving an algorithm which is not
attractive for practical implementation.

The final part of the “Release” code relies on the
following result.

Theorem 2. Suppose that the running task T1
releases a lock at time t, and define
p=DP(T1,t–). Then, immediately after time t,
(a) there does not exist any ready task with
dynamic priority greater than p; and (b) there
exists a ready task T2 (with the possibility that
T2=T1) such that DP(T2,t+)=p.

Proof. From Theorem 1, no task has dynamic
priority greater than p at time t–. From
Lemma 1, we deduce that no task has base
priority greater than p at time t–. The same must
be true at time t+, since no new task has entered
the system. Applying Definition 4, we have part
(a) of the Theorem.

When T1 releases a lock, this causes a
rearrangement of the blocking trees, but does
not alter the overall set of tasks in the system.
From Lemma 2, there is some task T3 in
�*(T1,t–) with BP(T3)=p. After the
rearrangement, T3 must be in one of the
resulting trees. That is, T3 must be in either
�*(T1,t+) or �*(T2,t+), where T2 is a some
other ready task. (Typically, but not necessarily,
T2 is a newly unblocked task.) In the former
case the priority of T1 does not drop; in the
latter case, the new dynamic priority of T2 is
equal to the old priority of T1.

Fig 3 – Change in the blocking trees when a lock is released. This diagram is for the case where the blocker
of a task is defined to be the holder of the lock on which the task is blocked. Similar diagrams can be

obtained for other definitions of the “blocked by” relation.

S1 T2 S2

T1

S1

T2

S2

T1

tasks blocked on L

(a) before T1 unblocks T2 (b) after T2 obtains L

 – 8 –

This implies that one of two things must
happen: either the running task (whose priority
must have been at least as high as that of any
other task in the system) keeps its old priority,
and therefore continues to be eligible to be the
running task; or the running task drops its
priority, in which case we must perform a task
switch to another task whose dynamic priority is
the same as the old priority of the original task.
We distinguish between these two possibilities
by looking at the “count” fields.

It is interesting to observe that the dynamic
priority of the running task remains constant –
although the identity of the running task may
change – except when the running task becomes
inactive or when a new task, of priority higher
than that of the running task, arrives. This is
because when the running task becomes blocked
it is always replaced by a task of the same
dynamic priority, either because it already had
that priority or because it gained it through
inheritance; and when the running task drops its
priority, there is always another task of the same
priority to replace it, from Theorem 2.

This observation has an important consequence
for practical implementations. As will be seen in
Section 6, we can sometimes avoid having to
keep an explicit record of the dynamic priority
of each task. Instead, we can simply record the
dynamic priority of the running task. From
Theorem 2, this changes only when tasks enter
or leave the system.

�� ����� ��������� ���������
�����

In this section, we consider four actual
implementations of the Lock and Release
mechanisms, based on the different definitions
of “blocked by” which were introduced in
Section 4. We have coded all of these
implementations, and tuned the code in each
case for the best performance we could manage.
The descriptions below are for the final code
after tuning.

���� 	��� ���������
�
������

This is the most basic version of the priority
inheritance, based on Policy 1 in Section 4: the
blocker of a task is defined to be the task
holding the lock which the current task is trying
to obtain.

The implementation is almost identical to that
shown in Appendix A. The main difference is
that it turns out to be unnecessary to maintain
any “Blocked By” information, since that
information is already available from the
“Holder” field of a Lock record. For this and
similar reasons, the final code is actually a little
simpler than shown in Appendix A.

This algorithm is compact and reasonably
efficient, and has the advantage that it is not too
hard to see from the code how the priority
inheritance is working. It is not, however, the
most efficient implementation we have been
able to obtain.

���� 	��� ���������
�
������

We get a rather different implementation,
although the same external behaviour, when we
use the “blocked by” definition of Policy 2 in
Section 4.

The obvious way to keep a task list in this case
is to use a doubly linked list, where the
“previous” pointer does double duty as a
“blocked by” pointer. Superficially, this
approach is attractive because tasks are kept on
this list in the order in which they are going to
be unblocked.

In practice, problems arise because the priority
inheritance implies that from time to time we
have to reposition tasks on this list. It turns out
that this causes major problems in updating the
“count” information when the priority of a task
changes. These problems can be solved, but at
the cost of some significant execution time
overheads. We therefore conclude that this is not
an attractive algorithm for practical
implementation.

���� 	��� ���������
�
������

This algorithm, which is based on Policy 3 in
Section 4, is built around the notion that the
blocker of a task is its ultimate blocker. For
example, if T1 holds a lock which T2 is trying to
obtain, and T2 is holding a lock which T3 is
trying to obtain, then we say that both T2 and T3
are blocked by T1. That is, we have defined
transitive blocking out of existence! This has the
interesting consequence that the blocking trees
all have unit height, so that

(a) task promotion is very simple, since it does
not have to ripple up the tree;

(b) the dynamic priority of a blocked task is
always equal to its base priority.

 – 9 –

The only real trouble spot in implementing this
is in the redistribution, as illustrated in Figure 3,
which must be done when a lock is released. In
principle we have to recompute the blocker of
every task which was blocked by the task
holding the lock. While this is not too hard to
do – and is certainly less complex than the
corresponding problem in Section 6.2 – it is an
overhead which we would prefer to avoid if
possible.

The solution is to avoid maintaining an explicit
representation of the “Blocked By” relation.
Instead, a task finds its blocker by checking the
holder of the lock on which it is blocked, by
checking further if that task is also blocked, and
so on until an unblocked task is found.
Although this does require looping, the loop is a
tight one and in practice very few executions of
the loop are needed.

Furthermore, this removes the need to have any
explicit record of a task’s dynamic priority.
Theorem 2 tells us the dynamic priority of the
next task to run, and it is a simple matter to find
that task, again by tracing through the “Blocked
On” information. Given this, it turns out that we
can also do without the “count” arrays of
Section 5.

The relevant parts of the code are given in
Appendix B. From our tests, this is the most
efficient of the algorithms described in this
section.

����
��� ���������� ���������

For completeness, we have tested an alternative
implementation in which a task releasing a lock
unblocks all tasks which it was blocking, after
which those tasks re-compete for the locks
which they wanted. The way to implement this
is to make the main body of procedure Obtain
a loop, so that a task continues trying to get the
desired lock until it is successful.

The beauty of this approach is that it is no
longer necessary to keep any form of blocked
lists, since all tasks are presumed to be ready
until proved otherwise. The data structures
simplify considerably; for example, there is no
need to maintain the “count” information of
Section 5.

Even better, the disinheritance problem becomes
a non–problem! This is because the looping in
procedure Obtain amounts, in effect, to a

continuous re-computation of all dynamic
priorities.

With all these advantages, the implementation
code looks very simple. Nevertheless, the
performance of this algorithm is actually quite
poor. In practice, it leads to excessive task
switching: tasks wake up in procedure Obtain,
discover that the locks they want are
unavailable, and immediately re-block
themselves. For this reason, we cannot
recommend the Inherit3a algorithm as a serious
contender for practical implementation.

����
��� ��������� ���������

We have also tested an implementation of the
policy listed as Policy 4 in Section 4; as
mentioned earlier, we suspect that Policy 4 is
equivalent to the Priority Ceiling Protocol [1],
although we have not yet been able to prove
this. The resulting code is remarkably similar to
that for the Inherit3 algorithm, the only
difference of real substance being the test for
whether a task should be blocked.

Because of this difference, however, it turns out
to be possible to discard the concept of a Lock.
Instead of specifying a lock, the caller of
procedure Obtain simplify specifies what
level of protection is being requested. For
example, a call Obtain(3) specifies that all
tasks of priority 3 or lower should be blocked
on any call to Obtain. This results in a rather
coarse discrimination, but it does tend to reduce
the overall level of task switching, because it
gives special preference to tasks which have
already passed their calls to Obtain.

�� 	�������
������� ��� ���� �����
�� ��
��������
���

Although the algorithms in the preceding
section work whether or not time-slicing is
permitted, time-slicing can sometimes cause a
degradation in system performance. The reason
for this is that a task can obtain a lock, and then
be replaced by another task (of the same
priority) which can also obtain locks. This
expands the set of tasks with the potential to
block higher-priority tasks. It also means that
the tasks which participate in the priority
inheritance mechanism can be scattered through
a “ready list” or similar structure, rather than
concentrated at the head of the kernel lists.

 – 10 –

We can reasonably conjecture that the abolition
of time-slicing could reduce the number of tasks
which affect the inheritance process; and,
indeed, this turns out to be the case.

The following theorems provide a theoretical
basis for the practical simplifications which can
be made. (The theorems could also be used to
check timing properties, since they imply limits
on the extent to which tasks can be held up by
other tasks. That aspect, however, lies beyond
the scope of the present paper.) In Section 8 we
shall show how the results can be turned into
practical implementations.

Let us define the Active Task Set (ATS) to be the
set of all tasks which have entered the system
and commenced execution (and which have not
yet left the system). Note that this set
necessarily includes the running task, every task
which holds a lock, and every task which is
blocked on a lock. (A task cannot be blocked on
a lock unless it has first run.) It does not,
however, include all of the ready tasks. A task
which has entered the system, been placed on
the ready list, but not yet selected for execution
is not in the Active Task Set.

Definition 5. A preemptive scheduling method
is a Strict Priority Inheritance method if (a) it is
a Priority Inheritance method, (b) tasks in the
Active Task Set are always given preference
over tasks of the same priority which are not yet
in the Active Task Set, and (c) a task cannot be
blocked on a lock unless that lock is already
held by some other task.

Restriction (b) in this definition is essentially a
condition on where in the ready list a task is
placed after it becomes unblocked or changes its
priority. (Note that this rules out the possibility
of time-slicing among tasks of equal priority.)
Restriction (c) rules out strategies like the
Priority Ceiling Protocol [2] which can deny a
lock to a task even though that lock is free.

The simplifications which this definition allows
all derive ultimately from the following result.

Theorem 3. For all time, and for each priority
level p, there exists at most one task in the
Active Task Set whose base priority is p.

Proof. The result is vacuously true initially,
when the Active Task Set is empty. Now
suppose that it is true up to time t, and consider
what happens if a new task enters the ATS at

time t. (Observe that the proposition cannot be
invalidated by a task’s leaving the ATS, nor is it
affected by any changes of state of tasks already
in the ATS.) Suppose that there exist T1�ATS
and T2�ATS with BP(T1)=BP(T2). If T1 is
ready or running, then by Definition 5 T2 cannot
run, and therefore cannot enter the ATS. If T1 is
blocked, let T3 be the root node of the blocking
tree in which T1 resides; then DP(T3,t)�BP(T1)
from Lemma 1. That is, T3 is a ready task in the
ATS which takes precedence over T2, and again
T2 cannot enter the ATS.

Note that the membership of the ATS changes
only when the running task leaves the ATS, or
when a new task arrives whose priority is
strictly greater than that of any task already in
the ATS. Priority inheritance and disinheritance
do not in themselves cause any change in the
ATS, they simply cause changes of state of tasks
already in the ATS. This follows from the
comments following Theorem 2.

Theorem 4. For each priority level p,

(a) There exists at most one task T1 which
holds a lock and for which BP(T1)=p;

(b) There exists at most one blocked task T2
for which BP(T2)=p.

Proof. Obvious from Theorem 3, since all
blocked tasks and all lock-holders are in the
Active Task Set.

Theorem 5. For each time t, each lock L, and
each priority level p, there exists at most one
task with base priority p which is blocked on L.

Proof. Obvious from Theorem 4(b).

The foregoing results are results about base
priorities. In terms of finding an efficient
implementation, it is useful to have comparable
results which talk about dynamic priorities.

Lemma 3. If T1 and T2 are two tasks in the ATS
for which DP(T1,t)=DP(T2,t), then either
T2��*(T1,t) or T1��*(T2,t).

Proof. From Lemma 2, there must exist
T3��*(T1,t) and T4��*(T2,t) such that
BP(T3)=BP(T4). From Theorem 3, this is
possible only if T3=T4. That is, the blocking
trees for T1 and T2 have a node in common, and
this is possible only if one is a subtree of the
other.

 – 11 –

Theorem 6. For each time t and each priority
level p, there is at most one ready or running
task in the Active Task Set whose dynamic
priority is p.

Proof. Suppose T1 and T2 are two ready (or
running) tasks in the ATS, with
DP(T1,t)=DP(T2,t). From Lemma 3, and the fact
that a ready task must be the root node of a
blocking tree, we deduce that T1=T2.

The significance of this result is that it tells us
how to deal with tasks which become unblocked
or which change their priorities: such tasks may
always be placed at the head of the appropriate
section of the ready list, without any risk that
this will cause inappropriate queue-jumping.
Furthermore the result implies that there is a
unique ready task of highest priority in the ATS,
which simplifies the decision about whether to
perform a task switch.

Normally there will, of course, be other ready
tasks which are not in the Active Task Set.
Those tasks can simply be placed at the tail of
the relevant part of the ready list as they arrive.
They will not be considered for execution until
there is no task in the ATS of equal or higher
priority – at which time it is appropriate that a
new task enter the ATS. In other words, nothing
special need be done about separating ready
tasks in the ATS from those which are not in the
ATS.

As a matter of implementation detail, it may be
convenient to have a separate array for the ready
tasks in the ATS, so that the conventional ready
list is used only for ready tasks which have not
yet entered the ATS. When the currently running
task becomes inactive, the ready list can be
examined to see whether to move a new task
into the ATS. Apart from this special case, there
is never any need to look at the tasks in the
ready list.

Theorem 7. The dynamic priority of the
running task is strictly greater than that of any
other task in the Active Task Set.

Proof. This follows directly from Theorem 1
and Theorem 6.

This innocent-looking result has some important
implications for what happens when the running
task becomes blocked. It implies that the newly
blocked task immediately goes to the head of

the appropriate blocked list. In addition, it
implies that priority inheritance always
propagates to the top of a blocking tree. To see
what this means, consider the case of a task T1
which becomes blocked by another task T2. It is
possible that T2 is already blocked by a task T3,
which is in turn blocked by T4, and so on. The
action of the priority inheritance mechanism is
that the priority of T1 should be passed along
this chain until (a) a ready task is reached, or (b)
a task is found whose priority is already greater
than or equal to that of T1. Theorem 7 shows
that case (b) cannot happen.

Theorem 8. For each time t, each task T, and
each priority level p, there exists at most one
Tp��(T,t) with DP(Tp,t)=p.

Proof. Suppose that there exist two tasks
Tp1,Tp2��(T,t) with the same dynamic priority
p. From Lemma 3, and the fact that distinct
elements of �(T,t) are in separate branches of
the blocking tree, the only possibility is
Tp1=Tp2.

This result becomes useful if we need to record
the set of tasks blocked by a given task. In the
presence of time-slicing, a linked list or
something similar would be needed. With
time-slicing prohibited, it is sufficient to have
an array.

Theorem 9. Suppose that we are using Policy 1,
2, or 3 of Section 4. Then for each time t, each
lock L, and each priority level p, there exists at
most one task with dynamic priority p which is
blocked on L.

Proof. From Theorem 7, a task which becomes
blocked has a priority different from that of any
task which is already blocked. With Policy 3, a
task never changes its priority after it has
become blocked, so there is nothing more to
prove.

With Policy 1, a blocked task can change its
priority by inheritance, but – again from
Theorem 7 – the new priority must be greater
than that of any task which is already blocked.

With Policy 2 a more careful analysis is needed.
It would appear at first sight that, if blocked task
T inherits a new priority, then the predecessor of
T on the blocked list will also inherit that
priority. In fact the sequence of events is (a) T
inherits a new priority, higher than that of any
other task blocked on L; (b) as a result of this

 – 12 –

inheritance, T moves to the head of the blocked
list, and now has no predecessor in the list.
Inheritance then flows to the holder of L rather
than to some other task blocked on L.

These last two results say that the representation
of blocked lists can be simplified: instead of a
complicated list structure, we can just use arrays
of blocked tasks. For Policy 3 we can go a little
further: for each p, there is at most blocked task
with dynamic priority p, and this holds globally
rather than on a per-lock basis.

Theorem 10. There does not exist T1��+(T,t)
with DP(T1,t)=BP(T).

Proof. If such a T1 did exist, then from
Lemma 2 we could find a T2��*(T1,t) such
that BP(T2)=BP(T). This is impossible from
Theorem 3.

The utility of this result is that we sometimes
want to use the “task blocking itself” fiction to
ensure that a task reverts to its base priority
when it is no longer blocking anything (in the
same way that �(BP(T),j) was used in the
definition of count2(T,j). This eliminates a
special case test during the disinheritance
operation.

Another way to look at dynamic priorities is to
assign dynamic priorities to locks. If we define
an active lock as a lock on which one or more
tasks are blocked, and if we define the
(dynamic) priority of a lock to be the maximum
base priority of the tasks blocked on it, then it
can be shown that there is at most one active
lock per priority level. We have found, however,
that in actual implementation the overheads of
maintaining the “active lock” information are
not justified from the benefits gained from the
information, so there seems to be little point in
further pursuing that issue.

�� ����
�
��
������ ��� ��

������
��������� �
�����

The implementations discussed in this section
are adaptations of the corresponding algorithms
in Section 6. Basically, we have taken the
original algorithms and improved them by use
of the theorems in Section 7.

���� 	�
� ���
������
��������

This algorithm manages to make extensive use
of a “bitset” representation of blocked tasks.
The ATS is represented by an array, with ATS[j]
holding the (unique) task of priority j. In view
of the results in Section 7, it is almost an
arbitrary decision to base this representation on
base priorities or dynamic priorities; we found it
slightly more efficient to use base priorities.
Given this representation, a set of blocked tasks
can be represented by a packed array of bits, one
for each member of the ATS.

In our tests, we used 16 distinct priority levels,
so that a set could be represented in a 16-bit
word. In this case the highest-priority task in a
set can be found in just four steps, so this is a
fast operation.

It turns out to be convenient to keep track of
both the tasks blocked by each task, and the
tasks blocked on each lock. The implementation
is then similar to that shown in Appendix A, but
with all calculations replaced by fast “bitset”
operations.

The final algorithm is relatively simple and
quite fast. It is not the most efficient
implementation that we found – the Inherit3N
algorithm turned out to be faster – but is very
close to being the most efficient.

���� 	�
� ���
������
��������

As in the case where time-slicing is permitted,
an implementation based on Policy 2 in Section
4 turns out not to be a good contender for
implementation. Even with the use of a “bitset”
representation of tasks, the computation of task
dependencies is excessively complex, mostly
because of the rearrangement of blocked sets
which occurs when a task changes its dynamic
priority. We have therefore abandoned this
approach.

���� 	�
� ���
������
���������

Starting from Policy 3 in Section 4, and using
the simplifications which arise from the “Active
Task Set” concept, one can derive at least two
distinct algorithms which can be used as good
implementations. For consistency with Section
6 we shall consider both of these under the same
heading; but in fact they lead to substantially
different implementation code.

The first approach is to maintain explicit
representations of both the “Blocked On” and

 – 13 –

“Blocked By” relations, using the bitset method
of representing a set. The mechanism for
obtaining a lock is straightforward and obvious,
given that it is known that the blocking trees are
limited to having height 0 or 1.

Releasing a lock is a more complicated
operation, because of the redistribution
operation illustrated in Figure 3. In the present
case, this redistribution can be done as follows.
Let T1 be the task releasing the lock, and let T2
– whose identity is initially not known – be the
task that will obtain the lock. Define Set1 to be
the set of all tasks that will remain blocked by
T1, and T1 itself; define Set2 to be the set of all
tasks that will be blocked by T2, and T2 itself;
and define Set3 to be the set of all other tasks,
originally blocked by T1, whose new blocker
has not yet been determined. Initially Set1
contains only T1, Set2 is empty, and Set3
contains everything else. Now we can enter a
loop where in each iteration we perform the
following operations.

(a) Let Set4 be the singleton set containing the
task of highest base priority from Set3;

(b) If that task is blocked, follow the “blocked
on” chain, transferring all tasks so found
from Set3 to Set4, until a task T3 is
reached which is not in Set3;

(c) Depending on whether T3 is in Set1 or in
Set2, transfer all of Set4 to Set1 or Set2.

It should be clear that Set3 will be emptied after
only a small number of iterations of this loop,
and that the identity of T2 will be found as a
side-effect of the calculation. Although this
calculation looks moderately complex, the
“bitset” representation of sets of tasks makes it
execute very quickly.

The second approach, which seems in practice
to be faster, is to search the chain of blocked
tasks, in the same way as was done in Section
6.3, at the time that a task switch is about to be
done. That is, we keep no information about the
“blocked by” relationships. Not only is this a
fast algorithm; as a surprise bonus, it turns out
to be identical in implementation whether or not
time-slicing is permitted.

���� ������ ������	���

For completeness, we have implemented and
tested no-timeslicing versions of the algorithm
of Section 6.4 – in which all tasks are unblocked

and made to re-compete when a lock becomes
available – and that of Section 6.5, which is
either equivalent to or similar to the Priority
Ceiling Protocol.

As expected, the approach of unblocking
everything turns to have excessive overheads in
terms of redundant task switching, and therefore
this approach is not worth pursuing further.

Our variant of the Priority Ceiling Protocol falls
a little outside the scope of this paper, because it
does not satisfy Definition 5, so we have not
investigated it in great detail. The main
observation was that the best implementation
we could find was the same regardless of
whether time-slicing was permitted.

�� ���	�
	��� 	���

����
���� ��

	��	���
���

The algorithms labelled Inherit3 and Inherit3N
have been implemented in the PMOS [3,4]
multitasking kernel, and they have proved to
work well with very little overhead.
Time-slicing in PMOS is controlled by a
compile-time constant, and there was no
difficulty in using conditional compilation to
support both variants of the algorithm.

One unexpected difficulty was that it was not as
easy as we thought to ensure that Assumption 1
was satisfied. A difficult arises in code like

Obtain(L);
procedure call;
Release(L);

where the called procedure becomes inactive by,
for example, performing a Wait on a general
semaphore. The problem here is that the caller
does not always know the internal details of the
procedure’s execution; and this can lead to
situations where a task which is supposed to be
waiting is allowed to execute. The reason this
can happen is that removing a task from the
Active Task Set does not automatically remove
it from the “blocked by” chain, so that
procedure RunNextTask in Appendix B
could cause a task switch to a task which is not
supposed to be active. Any re-design of the
software to check for this condition is likely to
add significantly to the kernel overhead.

We could of course accept the extra overhead,
and design the algorithms to work even in the

 – 14 –

absence of Assumption 1; but it is doubtful
whether this is worthwhile. It makes more sense
to assert that code which violates Assumption 1
should be redesigned.

A secondary problem is that a task may exit or
crash while holding a lock. This tends to be an
issue during system shutdown operations.

Our compromise solution to these problems, as
implemented in PMOS, is to keep track of all
locks held by a task. This means, among other
things, that violations of Assumption 1 can be
detected at run-time, and this helps to pinpoint
sections of code which were badly designed.
Our experience has been that this type of
violation tends to turn up almost immediately
during program testing. That is, it is unlikely
that a programming error involving the violation
of Assumption 1 would remain undetected past
the initial testing stage.

Apart from this issue, the implementation of
priority inheritance turns out to be easy, and its
run-time overheads – as compared to a

preemptive task switching strategy with fixed
priorities – are so small as to be completely
negligible.

�������	����

[1]Ragunathan Rajkumar, Synchronization in
real-time systems: a priority inheritance
approach, Kluwer 1991.

[2]Lui Sha, Ragunathan Rajkumar, John P.
Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time
Synchronisation”, IEEE Trans Computers
39 (9), Sept 1990, 1175-1185.

[3]P.J. Moylan, “The PMOS Definition
Modules”, Tech Rept EE9107, University of
Newcastle, February 1991.

[4]P.J. Moylan, “The PMOS Real-Time
Kernel”, 18th IFAC/IFIP workshop on
Real-Time Programming, Bruges, June
1992, session B3.

 – 15 –

����������� �� ����� 	��� ����
�����
� ����

PROCEDURE Promote (T: Task; p: PriorityLevel);

(* Called when T is (directly or indirectly) blocking a task *)
(* of priority p; thus the dynamic priority of T must be *)
(* increased if necessary to match this. If T is itself *)
(* blocked, the priority increase ripples up the blocking *)
(* tree. *)

VAR oldp: PriorityLevel;

BEGIN
INC (T.count[p]); oldp := T.DP;
IF oldp < p THEN

T.DP := p;
IF T.Blocked THEN

update the position of T in T.BlockedOn.BlockedList;
DEC (T.BlockedBy.count[oldp]);
Promote (T.BlockedBy, p);

ELSE
update the position of T in the ready list;

ENDIF;
ENDIF;

END Promote;

Fig 4 – The priority inheritance mechanism

PROCEDURE Obtain (L: LOCK);

(* Obtains lock L, waiting if necessary. *)

VAR Blocker: Task;

BEGIN
IF the current task should be blocked THEN

let Blocker be the task which caused the blocking;
CurrentTask.Blocked := TRUE;
CurrentTask.BlockedBy := Blocker;
CurrentTask.BlockedOn := L;
Add CurrentTask to L.BlockedList;
Promote (Blocker, CurrentTask.DP);
SelectAnotherTask;

ELSE
L.Locked := TRUE;
L.Holder := CurrentTask;

ENDIF;
END Obtain;

Fig 5 – Implementation of the Lock operation when time-slicing is allowed

 – 16 –

PROCEDURE Release (L: LOCK);

(* Releases lock L. This can lead to a change in dynamic *)
(* priorities, and/or a task switch. *)

VAR j, k: PriorityLevel; T, U: Task;

BEGIN
IF L.BlockedList is empty THEN

L.Locked := FALSE;
ELSE

choose a task T to unblock;
remove T from L.BlockedList;
L.Holder := T; T.Blocked := FALSE;

(* Some of the tasks which were blocked by *)
(* CurrentTask are now blocked by T. *)

j := T.DP; DEC (CurrentTask.count[j]);
FOR each task U in L.BlockedList DO

k := U.DP; U.BlockedBy := T;
DEC (CurrentTask.count[k]); INC (T.count[k]);

ENDFOR;

(* Remark: if we consistently choose the T of highest *)
(* DP, the above operations will have no effect on *)
(* T.DP. With some other strategies – for example, *)
(* unblocking tasks in FIFO order – it is possible *)
(* that T must be promoted at this stage. *)

IF T was not the highest–priority task in L.BlockedList
THEN check the T.count array,

and increase T.DP if appropriate;
ENDIF;

(* Does CurrentTask need to be demoted? *)

IF (CurrentTask.DP=j) AND (CurrentTask.count[j]=0) THEN
decrement j until CurrentTask.count[j] > 0;
CurrentTask.DP := j;
insert CurrentTask into the ready list, and perform

a task switch to T;
ELSE

insert T into the ready list;
ENDIF;

ENDIF;
END Release;

Fig 6 – Releasing a lock

 – 17 –

���	������� �� ��	� ���	����� �

������

PROCEDURE RunNextTask;

(* Performs a task switch to the first task on the active *)
(* list whose dynamic priority is CurrentPriority, if that *)
(* task is not blocked. If it is blocked, we switch to its *)
(* blocker instead. *)

VAR T: Task; L: Lock;

BEGIN
T := ActiveList[CurrentPriority].head;
LOOP

L := T^.WaitingFor;
IF (L = NIL) OR NOT L^.Locked THEN

EXIT (*LOOP*);
END(*IF*);
T := L^.Holder;

END (*LOOP*);
TaskSwitch (T);

END RunNextTask;

(**)

PROCEDURE Obtain (L: Lock);

(* Obtains lock L, waiting if necessary. *)

VAR Blocker: Task; M: Lock;

BEGIN
IF L^.Locked THEN

(* Work out the blocker of the current task. *)

M := L;
REPEAT

Blocker := M^.Holder; M := Blocker^.WaitingFor;
UNTIL (M = NIL) OR NOT M^.Locked;

CurrentTask^.WaitingFor := L;
TaskSwitch (Blocker);

END (*IF*);

(* When execution resumes at this point (via *)
(* RunNextTask), L^.Locked will be FALSE. *)

CurrentTask^.WaitingFor := NIL;
L^.Locked := TRUE;
L^.Holder := CurrentTask;

END Obtain;

 – 18 –

(**)

PROCEDURE Release (L: Lock);

(* Releases lock L. This implicitly changes the ”blocked *)
(* by” status of all tasks blocked by the current task, but *)
(* it turns out to be faster to let procedure RunNextTask to *)
(* recheck the blocking status than to keep track of *)
(* ”blocked by” information. All we need to know here is *)
(* whether we’ve inherited a priority greater than our base *)
(* priority. If so, we must have been blocking another task *)
(* which should run now – we can trust RunNextTask to work *)
(* out the identity of that task. *)

BEGIN
L^.Locked := FALSE; L^.Holder := NIL;
IF CurrentTask^.BP < CurrentPriority THEN

RunNextTask;
END (*IF*);

END Release;

