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Abstract- To control the performance of a packet- 
switched network efficiently, some knowledge on dynamic 
behavior of the network needs to be investigated. In this 
paper, we apply an adaptive control technique, Recursive 
Least Square (RLS)  estimation, to propose a new approach 
to  estimating the traffic parameters of the network. Based 
on an introduced dynamic model of the network, this ap- 
proach can, through adaptively adjusting forgetting fac- 
tors, not only filter out the noise from estimates while the 
network operates in a steady state, but also track parame- 
ter variations while in a transient state particularly follow- 
ing a step change on the parameter. Since the mean val- 
ues of the parameters are mainly considered, the dynamic 
model is suitable to any type of traffic. Therefore, the 
methodology presented in this paper can then be applied 
to the issues of B-ISDN network control, such as routing 
problem and congestion control. 

I .  INTRODUCTION 
In a packet-switched network, the good performance means 
to keep the network operating at  a stage where the aver- 
age delay per packet through the network or the network 
congestion is minimized subject to individual quality of 
service (&OS) requirement for a broad diversity of traffic 
classes [1],[2]. To approach such stage, however, one needs 
to understand the network quite well; and one needs some 
sort of dynamic tracking, due to the stochastic property 
of the network. Parameters such as packet mean arrival 
rate X and the link service rate p,  generally determining 
the performance of the network, play a crucial role in for- 
mulating a desirable route table or a flow control strategy 
for the network. Unfortunately, these two parameters are 
not measurable, i.e. cannot be obtained from the network 
directly. This situation forces us to estimate these param- 
eters in real time, based on a mathematical model which 
expresses the dynamic behavior of the network. 

Previous studies of parameter estimation have been 
mainly restricted to time invariant parameters. Moylan in 
[ 3 ] ,  [4] investigates a dynamic model to smooth, to predict 
the traffic, and then to  complement a routing strategy in 
circuit-switched network. For a packet-switched network, 
maximum likelihood estimation of X is formulated in [5] 
based on the data for k observed packets. 

To estimate time-varying parameters, a standard algo- 
rithm is Recursive Least Squares(RLS) estimation, with a 

forgetting factor to  discount the effect of old data. The 
forgetting factor can simply be a constant over a period 
of time, or deliberately be adjusted from time to time, de- 
pending on variation pattern in parameters. A number of 
ways to vary the forgetting factor have been investigated. 
Fortescue [6] suggests a time-varying forgetting factor cho- 
sen to keep a measurement of information content at a con- 
stant value. Parkum [7] introduces a selective forgetting 
method in which an individual forgetting factor to each of 
the eigenvalues of variance of estimate errors is assigned 
in order to make it possible to  adjust the forgetting profile 
according to the information pattern. These algorithms, 
however, are only suitable for tracking the slow changes 
of parameters, and may appear some drawbacks while ap- 
plied to the packet-switched network, since the real traffic 
of the network may fluctuate dynamically and step changes 
are likely to  occur frequently. Holst [8] develops a scheme 
to deal with these abrupt changes and achieves a good per- 
formance by switching the system works among different 
models. This switch is controlled by an argument called de- 
tector. But this algorithm is limited only for a system with 
a normal distribution of measurement noise. Millnert [9] 
presents an adaptive regulator to handle a dramatically 
changing system based on the assumption that the sys- 
tem alternates among some fixed grade levels. Obviously, 
the above assumption doesn’t hold for the packet-switched 
network. 

In this paper, based on some priori knowledge on the 
variance of measured noise, we introduce a new approach 
to  adapting the forgetting factor subject to network pa- 
rameter variations, even step changes. A careful analysis 
of the measured noise reveals that the individual sampling 
value of measured noise is conditional bounded. By defin- 
ing some confidence limits, one can easily check whether 
the measured noise fluctuates within a bound or beyond 
it a t  a sequence of sampling times so as to know if there 
has been a step change in the parameters. This is be- 
cause a certain percent of samples are supposed to vary 
within the bound unless a true change does happen. This 
criterion can immediately be applied to  the design of a 
time-varying forgetting factor. Moreover, since we adjust 
the forgetting factor more precisely, the approach can deal 
with both abrupt and slow changes. 

The paper is outlined as follows. In section 11, a dy- 
namic model of a packet-switched network is introduced, 

0-7803-2509-5195 US$4.00 0 1995 IEEE 2242 



which is suitable for the application of RLS estimation. 
Then the measured noise is studied and a time-varying 
forgetting factor is proposed in section IVand section V, 
respectively. Finally, section VLgives a simulation study 
and some conclusions appear in section VII. 

11. DYNAMIC MODEL 
Consider measurable quantities a ( t k ) ,  m( tk)  and q ( t k )  at 
sampling time t k  in discrete-time system. Let a( tk)  be 
accumulated number of packet arrivals up to time t k ,  m(tk) 
be the number of packets in the system including both 
those in the queue waiting to served and that is being 
served, and q ' ( t k )  denote the queue length in the buffer. 
There is little difficulty to understand that each of terms 
a( tk)  m(tk) and q ( t k )  can then be formulated by a sum of 
its mean and a noise term. That is, 

a(tk) = a ( t k )  f V a ( t k )  ( 2 . 1 )  
m( tk )  = f i ( t k )  + v m ( t k )  ( 2 . 2 )  

q ( t k )  = q ( t k )  f V q ( t k )  ( 2 . 3 )  

where v a ( t ) ,  vm(t)  and v9( t )  are measured noises of zero 
mean. 

A further investigation on the dynamic behavior of the 
queue indicatles that a dynamic model, based on the quan- 
tities a ( t k ) ,  n i ( tk )  and & k )  can be built as [ lo ] .  

(2 .4 )  
T 

Y k  ' p k - 1 8  + v k  

where 

previous sampling instants. vk is a vector of zero-mean 
entries. Our goal is to obtain a filtered estimate of the 
parameter vector 8. Given such a model, one can develop 
a parameter estimation algorithm to deal with the case, of 
considerable practical importance, where the arrival inten- 
sity X and service rate p are unknown and may be allowed 
to be time-varying even abruptly. 

111. RECURSIVE LEAST SQUARES(RLS) ESTIMATION 

Applying the well-known recursive least square estimation 
technique into our model, an estimator can be described 
by the following equations [ 1 2 ] .  

where the gain vector Lk is given by 

Lk = % - l p k ( l  f ' p zPk- lpk ) - '  

and the prediction error is gained by 

T A  
E k  = Y k  - ' P k  e k - 1  

the matrix Pk is updated according to 

where the forgetting factor a can be chosen as 0 < a 5 1 ,  
and may be adjusted dynamically. For example, when the 
network performs in a steady state, X and p must have 
remained at some fixed levels. Therefore, the main task 
of the estimator will be to filter out the measured noise 
so as to smooth the estimates. This goal can be achieved 
by raising the a to a higher level to allow the estimator 
to  include more old data; On the other hand, whenever 
there have been some changes on the parameters partic- 
ularly like step changes, the a needs to be reduced to a 
low level to discount the old data as quick as possible so 
as to eliminate their effects on the new estimates. As a 
result, the estimator can promptly track those variations. 
This turns out that the key step to improve the filter- 
ing and tracking ability of the estimator is to employ a 
state-dependent detector. The detector will continuously 
monitor the variations from the network, and consequently 
instruct the adjustment of the forgetting factor. More de- 
tails about the design of the detector are discussed in the 
following section. 

IV. STUDY OF MEASURED NOISE 
The study of measured noise aims at seeking an effective 
detector to monitor the network. Let .(A) be a stochastic 
variable representing the number of packet arrivals during 
the time interval A. Recalling the quantity a( tk)  in equa- 
tion ( 2 . 1 ) )  we have .(A) = a( tk)  - a ( t k - l )  in kth sampling 

where A = t k + l  - t k  is the sampling interval, and A < 2 / p  
is required to guarantee the model is stable [ l l ] .  In the 
model (2.4), I[t can be seen that yk and cpz-l are two vec- 

tors of quantities depending on the number of packet ar- 
rivals during the current sampling interval, and the num- 

interval. The measured noise v a ( A )  is evaluated by 

va(A) = .(A) - .(A) 

there .(A) denotes the mean value of .(A) which has 

ber of packets in the buffer of the node at present and 6(A) = E { a ( A ) }  = AA ( 4 . 1 )  
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Theorem 1 Let 77 be a percentage level, which is known 
as a confidence limit. Then we have, 

(a). va(A) is conditional bounded, that is Iva(A) 1 <_ B 
with probability greater than 7. 

(b). the bound B is governed by following criterion, 

where V&Lj represents the variance of the measured noise 
va (A) 
Proof 

theorem, which is stated as 
The proof is immediate from Chebyshev’s Inequality 

(4.3) 

where c, Vc are respectively the mean and variance of a 
stochastic variable [, and E can be any positive real num- 
ber. 

For a given traffic model and confidence limit, say 95%, 
the bound B can be obtained from equation (4.2) at ev- 
ery sampling instant for the current estimated A.  Now let 
.,(A) be observed by the detector to see whether it varies 
within the bound or beyond the bound. If it is noticed that 
there have been some sampling times at which ua(A)  fluc- 
tuates beyond the bound, it implies the balance of relation 
(4.3) has been broken down due to a dramatical change of 
f. The detector therefore reports that a step change might 
have occured on parameter A.  Accordingly, the forgetting 
factor will be dropped down t o  a lower level to  allow the 
estimator to discard the old data rapidly so that it enables 
the estimates to follow that change promptly. Since the 
detector reacts much quickly with the occurrence of the 
step change, proper values for the time-varying forgetting 
factor can immediately be assigned. The accuracy of esti- 
mates will definitely be improved. 

V. PERIODIC FORGETTING FACTOR 
Periodic Forgetting Factor(PFF) was first presented in au- 
thors’ previous work [lo]. We would like to give a brief 
explanation here. Considering time interval T ,  which is 
assumed to be much longer than sampling interval A, one 
can construct a time sequence which is marked as To, t o i l  
t 0 2 ,  . . . ,  t o n ,  Ti, t i l ,  t 1 2 ,  ..., tin, . . ‘ ,  T,, ..., where 
t , j+l  - t,, = A, Tm+l - T, = T with T = nA,  (n  >> 1). 
The P F F  is defined by. 

where R will be modified at each moment Ti(i = 1 , 2 ,  . . .) 
subject to  recommendations from the detector. During 
a period of time T, a p f f  keeps at a high value to allow 
more old data ‘alive’ so as to smooth the estimates. This 
smoothness is attributed to  the increment of measurements 
during long time observation. While a t  each time Ti(i = 
1 , 2 , .  . .), since R is changeable between 0 and 1, c r p f f  can 
be adjusted to  whatever it requires, such as a low value. 

A .  New Bound 
In P F F ,  since the forgetting factor will be updated in 
every time interval T rather than A, the inspection point 
of the detector will instead be measured noise of the packet 
arrivals during time T ,  i.e. 

va(T)  = a ( T )  - AT 

The corresponding bound BT is found 

where Va(T) refers to the variance of v,(T). As mentioned 
in last section, we prefer to  know if Iva(T)\ is less than 
BT and how big a gap exists between them. In practice, 
we find that the measured noise still needs to  be trimmed 
before being examined by the detector. Therefore, a low 
pass filter is applied, which is of following recursive form. 

uk+l = Pub + (1 - P)va(T) (5.2) 

where uk denotes the filtered measured noise and /3 is a 
coefficient. It is clear that the mean value of term ak still 
remains the same as the mean value of va(T) .  But V,, the 
variance of uk, will be scaled down 

1 - P  Vn = l+p (5.3) 

Accordingly, the new bound Bn for the filtered measured 
noise can be roughly estimated as. 

(5.4) 

The parameter ,D determines, roughly speaking, how many 
oa(T)  values that should be included. E.g. ,D = 0.95 cor- 
responds to about 20 values, which is a reasonable choice 
in many applications. A small ,D allows a fast detection of 
step changes, although at the price of less security against 
false alarms. This trade-off is typical for all of such kind 
of detections. 

B. Dynamic Property of R 

The quantity K plays a key role in controlling the forget- 
ting factor. Intuitively, we believe that an ideal R subject 
to measured noise and its bound should be particularly 
designed as shown in Fig (1). The graph can be divided 
into two areas: steady area and transient area, which corre- 
spond to two cases: measured noise varies within its bound 
or breaks through its bound. Consider the case that the 
measured noise fluctuates beyond the bound. This implies 
there might have been a step change on the parameters. 
The forgetting factor rc,  therefore, should be reduced to  a 
lower level so as to enable the estimates to track the step 
change as quick as possible. Generally speaking, the more 
significant the measured error exceeds its bound, the more 
certain the estimator feels that a step change has occurred. 

2244 



09- 

0 6 -  

07- 

0 6 -  

0 5 -  

0 4 -  

0.1 

Figure 1: Ideal Forgetting Factor Versus Measured Noise 

Consequently, the more urgent to forget old data the esti- 
mator becomes, and the more dramatically the forgetting 
factor is required to be reduced. On the other hand, how- 
ever, if the noise varies within the bound, it means a steady 
state has been built, therefore, IC needs to be increased to 
a high level so as to keep more data alive and to filter out 
the noise from estimates. At this moment, for a security 
reason, any change on forgetting factor must be very care- 
ful, since the steady state may be interrupted due to the 
choice of a wrong value for forgetting factor. In the stan- 
dard Recursive Least Square algorithm, forgetting factor is 
usually recommended varying around 0.8 to 0.99. The rea- 
son one never chooses too low value is that ,  it is believed, 
if the forgetting factor has moved close to 0.8, discounting 
speed may become quick enough for estimates to attempt 
to follow any variations except step change. This rule is 
also applicable to the design of IC in its steady area. sum- 
marizing above two aspects, IC can be deliberately designed 
a s  

where parameters yu gives the minimum value of the for- 
getting factor in the steady area, and yu determines the 
maximum value in the transient area. Both need a trade- 
off for choice. The lower the yu or yi are picked, the fast 
the estimate follows the variations of parameters, with the 
cost of less security against false measurements. The pa- 
rameter os is referred to a successive increment or decrease 
of va(T)  immediately prior to the moment IC is updated. 
The reason of using os instead of va(T)  directly is that, as 
os records a peak-peak value of va(T) ,  it shows the ten- 
dency of variation of v,(T), which reveals the step changes 
more apparently than va(T)  does. 

It is note that the equation (5.5) is not the unique one. 
More solutioins could be possible in practice. 

VI. SIMULATION STUDY 

To confirm the superbly performance of PFF in the esti- 
mation of parameters in the network, simulation study is 
implemented. 

The following example is typical. X is allowed to be time- 
varying during the 24000 seconds of simulation time, which 

jumps up from 0.1 to 0.3 at the 8000th second and back 
from 0.3 to 0.1 at  the 16000th second. Let l / p  keep as con- 
stant 3. We pick up 0.4 for yu and 0.2 for as its extreme 
values of IC, and let T be equal to 20 seconds and A equal 
to 1 second. In order to distinguish its good performance 
of PFF clearly from that of the standard RLS,  we first 
depict the estimation results of using RLS in Fig (2) and 
(3), where the forgetting factor is set as a constant 0.98. 
By PFF, the estimated result and reference value of X are 

1 Fixed Forgelling Factor U =o 98 

0.5 "'"I I 

0.4 

0.3 

0.2 

I 
Time (sec) x 1 0 4  

1 1.5 2 2 5  0 5  

Figure 2: Estimate of X Using RLS 

0 8  
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0 6  0 7 t  , I I 
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X l  Time (sec) 
0 5  

Figure 3: Estimate of p Using RLS 

0.4 

0 OS! 

1 1 5  2 
x 11 Time (sec) 

0 5  

Figure 4: Estimate of X 

sketched In Fig (4), and those of p in Fig (5). From Fig 
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Figure 5: Estimate of p 
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Figure 6: Measured noise, Bound and Forgetting Factor 

(2) and (3), it is obvious that the estimates are seriously 
interfered of measured noise. The only way to smooth the 
results is to choose a high value for the forgetting factor. 
Unfortunately, the price is leading a sluggish response near 
the time where X changes. Fig (4) shows that new scheme 
using time-varying PFF performs quite well for the sys- 
tem either in a steady or transient state. To show how 
the forgetting factor varies in different situations such as 
X remains in a fixed level or jumps from one level to an- 
other, Fig (6) gives a graphical view along with the related 
measured noise and its bound. It can be seen that during 
those three assumed steady states, measured noise never 
grows up beyond its bound, so the forgetting factor is kept 
at higher levels almost close to  1; While in those two tran- 
sient states, measured noise suddenly breaks through its 
bound, the forgetting factor in turn drops down markedly. 
These results are just what we expected. 

VII. CONCLUSIONS 

In this paper, a new time-varying forgetting factor is for- 
mulated. This factor is updated subject to variation pat- 
tern of the traffic in every regular time. Since the adaptive 
forgetting factor enables the estimates either to  remain in 
a stable level or to track the variations quickly, it is partic- 
ularly useful in the estimation of time-varying parameters 
of a packet-switched network. Both theoretical and sim- 
ulation studies illustrate that the time-varying PFF can 

handle a system either in a steady state or a transient mo- 
ment following parameter variations even step changes. 

To estimate the parameters in a packet-switched net- 
work is an essential step but not our final destination. 
Based on such a result, a more efficient way to control 
the network can be achieved if a dynamic routing strategy 
or flow control technique is proposed. 
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