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I. INTRODUCTION 

I N THE PAST and current research on stability prob- 
lems there is a d\chotomy between input-output and 

state-space approaches. To gain the full benefit of the two 
approaches it is desirable to have results showing when 
input-output stability implies Lyapunov stability (for 
some results in the opposite direction see [l], ‘[2]). The 
best-known result along these lines is due to W illems [3], 
who shows that, with certain reachability and observabil- 
ity assumptions, an input-output stable system is globally 
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asymptotically stable in the sense of Lyapunov. While this 
is a powerful result, it has two features that make it 
worthwhile to study the problem further: 1) in the case of 
the standard finite-dimensional linear time-invariant sys- 
tems, W illems’ result states the following: if the system is 
controllable, observable, and L, stable, then it is also 
globally asymptotically stable. However, in such a case it 
is well known that the above statement is true with 
controllability and observability replaced by the ‘weaker 
requirements of stabilizability and detectability, respec- 
tively. Thus it is worth investigating whether a similar 
weakening is possible in the case of nonlinear systems as 
well. 2) The uniform observability property defined in [3] 
has the, disadvantage that it is not necessarily preserved 
under feedback. Hence, given a large-scale interconnected 
system, one cannot verify uniform observability at the 
subsystem level. Thus it is desirable to define suitable 
properties for nonlinear systems that are preserved under 
arbitrary interconnection. 
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In extending our results from single systems to intercon- 
nected systems, we require that the Cartesian product of 
the subsystem state spaces qualifies as a state space for 
the overall system. In this paper we present some suffi- 
cient conditions for this to hold. These conditions are the 
state space analogs of the input-output results in [4], and 
reduce to the classical “no delay-free loops” condition in 
the case of digital filters. 

II. NOTATION AND DEFINITIONS 

Consider a system with state space X, input spaces CZL, 
and %!.Lc%~, output spaces ?!& and %cC=, and some 
distinguished “initial state” set Q LX. The state space X is 
a normed space. The set 0 might contain only a single 
point such as the origin, or several equilibrium points, or 
even (the set of states comprising) a limit cycle. Elements 
of %, GZL, are functions of time, mapping R into U (the set 
of input values), and we assume that P,‘& @L VTE R, 
where PT is the causal truncation operator defined by 

Similarly, % and %e consist of functions mapping R and Y, 
and we assume that PTGy, c‘% VTER. The input-output 
relationship is given by 

Y= G(x,, t,)u (2) 

where xc EQ and t, ER denote the initial state and initial 
time, respectively, and G(x,, to) maps Qe into ‘%l= for all 
xc EQ and all t, ER. 

Typically, X= R” in the case of a finite-dimensional 
system, and X is a separable Hilbert space in the case of 
an infinite-dimensional system. For the input and output 
spaces typical examples are U= Rk, %= Li, and G2L, = Lie 
for some integer k and some p E[ 1, oo], .and 9 = Li for 
some integer I and some 4 E[ 1, co]. The representation (2) 

% takes into account the possibility that the input-output 
map depends on the initial ,&ate and time. 

Definition 1: 

The reachability definition requires that, starting at any 
time t,prior to t*, we can go from a state in Q at time t, to 
every state in Xi at time t, (See also Lemma 2 in Section 
IV). CSB requires that if we start at x,,EQ and apply a 
stalbilizing control u E X(G( x0, to)), then the resulting state- 
trajectory is bounded. CSA requires that, under the same 
conditions, the resulting state trajectory approaches P as 
t+co. ‘Clearly, if Q is a bounded set, CSA implies CSB. 

X(G(x,, t,)) A {u&L: G(x,, t&E%}. (3) 

Thus X(G(x,, to)) can be thought of as the set of all 
“stabilizing inputs” to the mapping G(x,, to). In this 
paper, for the most part we never explicitly compute 
X(G(x,, t,)); however, if G(x,, to) represents a linear 
time-invariant system, then under certain conditions one 
can calculate X(G(x ,,, to)) (see [5] for details). 

Definition 2: The system (2) is input-output stable (or 
I/O stable for short) if 

X(G(x,, to>) =% Vx, &, Vt, ER. (4) 

Equivalently, G is I/O stable if, for all x,, EQ and 
PER, G(x,, to) maps G% into %. Conversely, G is I/O 
unstable if there exist x0 EQ, t, ER and UE’?L such that 
G(x,, ~,)uE%~\‘%. 

Both CSB and CSA are forms of detectability, though 
this may not be evident at first glance. Typically, we study 
the property CSB when %= L& and 9 = LL. Thus CSB is 
a formalization of the following concept: if the input is 
bounded and the output is bounded, then the state must 
be bounded. In the same way we typically study the 
property CSA when %= Li and ?J 7 Li for some p < 00. 
Thus CSA is a formalization of the following concept: if 
the input goes to zero and the output goes to zero,, then 
the state approaches the “equilibrium set” Qt. In particu- 
lar, if u(.)=O, we don’t insist that x(.)=0; rather we only 
require that x(.) is bounded (CSB) or approaches &?(CSA). 
In other words, the part of the state that we cannot 
measure is well behaved. 

111. STABILITY bWLTS 

.A CSB or CSA system is one for which instability in the 
state is, in effect, reflected in the output. Thus we would 
exlpect that, given either of these properties, input-output 
stalbility would imply internal stability. The precise results 
are contained in the next two theorems. 

Theorem 1: Suppose that G(Q, R) is I/O stable, that 
X, CX is reachable from L? at time t,, and that system (2) 
is CSB at t,, Vt, f t,. Then cp(x,, t, ti,O) is bounded as a 
function of t, Vx, EX,. 

To keep the exposition simple we assume that the input In effect the theorem states that if a system is I/O 
- u(.) and output y(.) .of the system (2) are related by statble and CSB, then all zero-input trajectories starting 

i(t)=f(x(t), u(t), t), 

y(t)=h(x(t), u(t), t) 

Vt>t,, x(t,)=x, (5a) 

(5b) 
where the functions f and h are such that, for all x E 0, t, 
E R and u E%~, (5) has a unique solution consistent with 
(2). We use $(x0, t, t,, u) to denote the value of this 
solution at time t. 

We now present the definitions of reachability and 
“detectability” for nonlinear. systems. 

Definition I: A state x, EX is reachable t, ER from Q if 
there exists some finite t* < t,, such that for all t,< t* 
there exist X,EQ and UE’%~ such that +(x,, t,, t,, u)=x,. 
A set Xi GX is reachable at I, from 52 if every XEX, is 
reachable at I, from Q. 

Definition 2: The system (2) is conditionally state- 
bounded (CSB) at t, ER if x0 EQ and u~X(G(x,,t~)) 
together imply that there exists a constant M(u) such that 
II cp(x,, t, t,, u)ll ( M(u) vt > t,. 

Definition 3: The system (2) is conditionally state- 
asymptotic (CSA) at t, ER if x0 EQ and uEX(G(x,, to)) 
together imply that lim d[cp(x,, t, t,, u), &] = 0, where 
d(z,Q)=inf,,,IIx-,zII is the distance between z and 0. 
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Theorem 3: Suppose’(A1) holds, that %e  is closed un- 
der addition, and that X,., rXi is reachable from 52, at time 
t, for each subsystem Gi. Then X, =X,, X * * * XX,, is 

Fig. 1. 
reachable from fi at time t, for the system (6). 

.Proof Given xi1 EX,,, select tei <t,, zei E&, and 
from reachable initial states are bounded. Roughly speak- ui l &i such that &(zoi, ti, tOi, ui)=xi,, for each i. Let 

ing, I/O stability, plus reachability, plus CSB, imply t, =min t,i; then, by the definition of reachability, there 

Lagrange stability. exists xsi ~~~ and ui E%~~ such that +(x0,, ti, t,, ui)=’ 

Proof: Given x, EX,, select t, <t,, x,, ~a, and UEG~L, ~,~,tli. If we now apply the external control defined by 

such that +(x0, t,, t,, u)=x,. (This is always possible be- 
cause X, is reachable at t, from Q.) Since UE%, we have u exti L  ui +  5  HijGj(xoj, to)uj (7) 
P,,uE’%. Also, by I/O stability we have X(G(x,, t,,))=%, 

j=l 
. 

so that PI,u EX(G(X,, to)). Finally, by CSB at t, we have it is easy to see that the state at time t, of the system (6) 
+(x0, t, t,, P,,u)( =+(x1, t, tl,O) whatever t > tl) is bounded wi11 be (xiiP’ ’ * ’ xmt)* H 
as a function of t. n  Theorem 4: If each subsystem Gi is CSB (CSA) at t,, 

In the preceding theorem the assumption that the sys- each Hii maps ?Jj into % j, and each G2Li is closed under 
tern (2) is CSB at all t, < t1 can be weakened, but at the addition, then the system (6) is CAB (CSA) at t,. 
expense of a  more cumbersome statement. Proof Let G(x,, to) denote the relation between u,,~ 

Theorem 2: Supljose that G(Q, R) is I/O stable, that andy and suppose Uext EX(G(x~y t~)); then for each i we 
. X, CX is reachable from fi at time t,, and that (2) is CSA have ‘ext i &L, and yi E‘?&. Since HiI maps ‘% j into 9~~ for 

at t, for all t, <t,. Then cp(x,, t, tl,O)+Q as tex, tlx, E all i, j, 

x,* 

this implies that Fij yj E ai Vi, j, so that ui EQiVi. 
Next ui E%,, yi E?$ imphes that ui EX(G~(X~~, to)). Since 

Proof Similar to that of Theorem 1. . each subsystem is CSB (CSA) at t,, we now have that 
As a consequence of these results the problem of check- +(~,a, t, to, ui) is bounded Vi (approaches ai for all i). 

ing internal stability can be replaced by the (often sim- Hence the system (6) is CSB (CSA) at t,. n  
pler) problems of checking reachability, I/O stability, and Suppose now that the large-scale system (6) is known to 
CSB or CSA. For small systems this may be only a minor be I/O stable (though the subsystems might not be). 
gain. The real advantage comes when dealing with inter- Theorems 1 and 2 provide a means of checking whether 
connected systems because both reachability and CSB the system is also internally stable; most important, Theo- 
(CSA) can be checked at the subsystem level, leaving only rems 3 and 4 show that the hypotheses of Theorems 1 and 
I/O stability, which can often be established by studying 2 can be checked at the subsystem level. 
the properties of the various subsystems and interconnec- 
tions. 

IV. TESTINGFORREACHABILITY, CSAANDCSB 

Consider the interconnected system In this section we discuss various ways of testing whether 

‘i =  ‘ati - ,jIl HijYj 

a given system has the properties of reachability, CSA and 
CSB. Specifically, if the initial state set a  is invariant in a 
sense to be made precise below, we show that the defini- 

Yi =Gi(xoi> to)ui i= 1;. . m  (6) 
tion of reachability can be replaced by an equivalent 

where each Gi is a dynamical system with input, output, 
property that is easier to check. Further, we relate CSA 

and state spaces ‘?.lei, ‘$+, Xi, Gi, respectively; uexti 
and CSB to detectability in the case of liner time-invariant 

E‘?Lei finite-dimensional systems. In view of Theorem 4 these 
Vi; and Hii: %,,+‘%~i is a memoryless operator (i.e., 
PrHijPr = PrHij, QrHiiQr = Q,Hij) Vi, j. We  take 

relationships also apply in the case of Lur’e type feedback 

G21,=5?Leix- x%~,,, and 9Je=CLle,x--- 
systems, as well as an arbitrary interconnection of linear 

X%Je,,, to be the time-invariant subsystems via memoryless interconnec- 
input and output spaces for the overall system. We  also tions. 

. make the important 
Assumption (AI): The overall system (6) is a dyn-ical 

Definition 4: Given the system (5) the set a  is said to 

system with state space X=X, X * . * XX,,, and initial state 
be negatively invariant if the following is true: For every 

set fi=Q, X-s * X8,. 
t, ER, t, < ti, and x1 ~s1, there is an x0 E&J such that 

This assumption does not hold for several innocent 
+(x,p ti9 t,,O)=X,. 

looking systems, such as the one shown in Fig. 1, with 
In case ti consists of a  set of equilibrium points, the 

above condition is satisfied with x0 =x1. In case (5) repre- 
gi(s) =s/(s + 1) and gz(s) =s./(s+2). Section V contains sents a time-invariant system and a consists of a  limit 
some simple sufficient conditions for the above assump- 
tion to hold. 

cycle of period T, the above condition is satisfied with 

W ith this setup we can state some results concerning 
x,, =+(x,, t, t,,O), where 

reachability and CSB (CSA) of the overall system in terms i=t-(t, -to) mod T. (8) 
of the subsystem properties. This is the motivation for calling ti negatively invariant. 
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Lemma 2: Suppose Q is negatively invariant with re- 
spect to +. Then a state x, EX is reachable from D at time 
ti if and only if there exists some finite t* < t,, and x0 E‘?.L 
and UE%?L~ such that +(x0, t,, t*, u)=x,. ’ 

Proof Obvious. 
A comparison of Lemma 2 with Definition 1 clearly 

brings out the simplification involved in case &l is nega- 
tively invariant. 

We turn now to CSA and CSB and focus our attention 
on linear systems of the form 

a(t)=Ax(t)+Bu(t) u(t)= Wt) (9) 
where x=R”, U=Rk, Y-R’. 

Lemma 3: Suppose the system (9) is detectable and 
that p < oo(p = 00). Then (9) is CSA (CSB) with Q = 
{O}, t, =o. 

The proof is simple and is, therefore, omitted. 
We conclude this section by working out an example of 

a CSB system whose input and output spaces are L, (and 
not L, as in Lemma 3). 

Example: Consider’ the forced van der Pol oscillator 

1,-x, 1, =x, +p(1 -$)x2 +u; y=xz (10) 

with’%=~=Lz. Let v(x)=x~ +x,2)/2. Then 

d=~(l-x:)x;+xzu 

(11) 

so , 

ifyEL, UEL,. 

(12) 
Hence, this system is CSB with D = {0}, t, = 0. 

V. WELL-P• SEDNESS t 

Recall now that we are studying an interconnection of 
several smooth dynamical systems, described by 

ai(t)=f;(xi(t)P ui(t)9 t, (13a) 

Yi(t)=hi(xi(t), ui(t), t) (13b) 
which are interconnected through memoryless operators 
in the form 

ut(t)=uext i(t)- fZ rrij(Yj(t>yt) 
j-l 

where A, hi, Hij, are all continuous. The objective of this 
section is to present some sufficient conditions, based on 
graph-theoretic techniques, for the system (13) to be well- 
posed. Substituting (13~) into (13b) yields 

Ui(t)=Ucxt i(t)’ ,gl Hij(hj(Xj(t), uj(t), t)’ t), 

ICI,... ,m (14) 

or, more compactly, 

Ui(f)=Uext t(t)- 5 Eij(Xjtt)9 U](t), t), 
j=l 

i+i;-.,m. (1% 
Now, if we can “solve” the implicit equations (15) to 
oblain explicit expressions for ui in the form 

ui(t>=Ci(x(t), uext(t>7 t, 06) 
where Ci is continuous, then the system (13) is we&posed. 

Towards this end let us define a dependence digraph D, 
which has m vertices (the same as the number of subsys- 
tems), and contains an edge from vertexj to vertex i if and 
only if Eij depends explicitly on uj. 

Theorem 5: If the dependence digraph D is acyclic, the 
system (13) is well-posed. 

Proof We shall show that if d is acyclic, then (15) 
can be solved in the form (17). 

If D is acyclic there is at least one vertex that has no 
predecessor; i.e., all edges are directed away from it. Let 
Za <denote the index set of vertices that have no predeces- 
sors. From the manner in which D was constructed, it 
follows that whenever x EZ,,, Z$ does not depend on Us, 
for alli. Thus the ith equation m (15) is of the form 

ui(t)=u,i(t>- 5 Eij(Xj<t>,t), ViEZ,. (17) 
j=l 

Next, remove from D all edges leaving vertices iEZ,, and ~ 
let D, denote the resulting digraph. Since D is acyclic and 
D, is a subgraph of D, it is clear that D, is also acyclic. 
Let I, denote the index set of vertices in D, that do not 
have predecessors. Going back to D, it is clear that 
whenever i EZ,, all predecessors of i belong to I,. Thus, 
whenever i EZ,, the ith equation in (15) is of the form 

Ui(t)=u,i(t)- 2 Eij(Xj(t), Uj(t)> t) 

-jzoEij(Xj(t), f), ViEZ,. (18) 

By substituting from (17) into (18), (18) can be put in the 
form (16). By repeating this bootstrap operation we can 
ultimately obtain equations of the form (16) for all i. 
Cl’early all the functions Ci are continuous. I 

This result bears some similarity to the we&posedness 
criterion in [4]; in particular, the graph D here is similar to 
the reduced digraph in [4, Th. I]. However, this paper and 
[4] are concerned with two different problems. 

VI. CONCLUSIONS 

:In this paper we have presented two types of results; 
namely, connections between input-output stability and 
Lyapunov stability, and well-posedness of interconnected 
systems. In the process of establishing the connections 
between I/O stability and Lyapunov stability, we have 
introduced two new types of detectability (CSA and CSB), 
which have the advantage that they are preserved under 
interconnection. 
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There is much work that remains to be done. First, the 
results of Theorems 1 and 2 can be “localized”, giving a 
connection between “small-signal” L, -stability and local 
Lyapunov stability. Second, the results presented in Sec- 
tion IV concerning verifications of CSA and CSB can be 
improved by extending them to general nonlinear systems 
(as opposed to linear systems with nonlinear memoryless 
feedback). Finally, the sufficient condition of Theorem 5 
can be replaced by weaker conditions. All in all, we 
believe that this subject offers many challenges to future 
researchers. 
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