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Technical Notes and Correspondence 

A Connective Stability Result for 
Interconnected  Passive Systems 

PETER J. MOYLAN 

Abs tmc t -Wn a large scale system is formed  from linear intera~mec- 
tiom of a number  of passive snbsystems, a diagonal dominance d t i o n  
on the interconnection matrix is known to ensure asymptotic stability. It is 
shown that the same  condition ensures that s t a b i i  is retained when a 
large class of nonlinearities, inchding nonlinearities with memory, is 
allowed in tin? interoonnections. In particular, arbitrary distributed delays 
may be inserted without loss of w i .  

I.  INTRODUCTION 

There are several known criteria-see, for example, [l], [2]-for 
stability of a largescale system  whose  subsystems are passive.  Some (but 
Fot all) of these criteria also  imply connective stability in the sense of 
Siljak [3]. In a crude sense, this means that stability is retained even 
when  some or all of the interconnection gains are reduced. 

A more  complex  but  practically important problem arises when the 
interconnections have  some  memory. For example,  the communication 
of signals from one  subsystem to another might  involve a time  delay. 
Conditions under  which  a linear system can tolerate arbitrary time 
delays,  without  losing stability, are known [4]. For interconnected non- 
linear systems,  with nonlinear perturbations and time  delays  in  the 
interconnections, a stability analysis  is  obviously  more complicated. 

The central result of this note is a criterion which guarantees that a 
large-scale  system, formed by interconnecting passive  subsystems, re- 
mains stable under  a  large  class of distortions in the connections be- 
tween subsystems. The class  includes nonlinearities in the sector [ - l, 11 
arbitrary time  delays (including distributed time  delays), and many other 
nonlinearities with memory. The stability criterion is also necessary for 
absolute stability, in the sense that if it is violated,  then there exist 
systems in the class  considered  which are unstable. 

The result is a straightforward application of a  general stability 
criterion in [ 1, Theorems 1 and 21. If one is not particularly interested in 
generating  Lyapunov functions then the result  may also be obtained as a 
special case of a  result  by Araki [6, Theorem 41, with  roughly an equal 
amount of effort. 

11. F'ROBLEM FORMULATION 

The question treated in [4] was the stability of a  set of equations of the 
form 

i i ( t ) = - - a i i x i ( r ) +  u i j x , ( t - q j ) ,  i= l , . . .  ,N (1) 

where the -ag and qj are constants (actually, the case of time-varying 
parameters was also covered  in [4], but we shall not attempt this 
extension).  Here,  a  somewhat  more  general  class of systems will be 
considered. 

Let P, be the causal truncation operator, and assume that all signals xi 
are such that, for all T< 00, PTxi belongs to a Hilbert space.  The 
notation (x ,y ) ,  will be used to mean (P,x,y) = (x ,PTy)  = (P,x,P,y). 
Also ( ( x ( ( ,  denotes  the truncated norm IIPTxll. 
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Basically,  the  large-scale  system  considered  here is an interconnection 
of N passive  systems.  We  have N inputs q and N outputs y,, which are 
constrained via 

2 ( u i , y i ) r + - ( q , q ) T > 0  forallT<m. 1 
% 

(2) 

(This is actually  a  weaker constraint than passivity,  since we will later 
require a, >O.) Apart from this constraint, the internal details of the 
mapping  from ui toy, are of no interest. 

The interconnection has the form 

ui= -u,Yi+ x a..+..( .) iri 'I rl yJ (3) 

where the ag are scalar constants, and the +u are operators which  obey 
the constraint 

ll+g(u)llr< Iloll, for all u and all Tc 00. (4) 

This means that the $v can be linear gains in the range [ - 1,lk or 
memoryless nonlinearities in  the sector [-  1,1], or  even  elements  with 
memory. In particular, time  delays  satisfy  (4). This means that the  class 
of systems described by (2)-(4) includes  systems of the form (I), as a 
special  case. 

Inequalities (2) and (4) are both special  cases of the  inequality 

(vi,Q~i>~+2<~i,s,ui>,+(u,~q),~O ( 5 )  

for aU T< m and all q, where a+ denotes the input to a subsystem andy, 
its output. For constant matrices Qi, Si, 4., we call a  subsystem satisfying 
(5) dissipative [I], or ( a ,  Si,&.) dissipative  when it is desirable to show 
the coefficients  explicitly. Casting the constraints in this form allows the 
use of a stability test from [I], briefly  described as follows. 

Let M dissipative  systems be interCOMeCted  with the linear constraints 

M 

j -  1 
ui = - 2 h g j .  (6) 

Let H be the matrix with  elements hij. Define Q=diag(Q,,Q,.--,QM), 
S = diag(S,, S,, . . . , SM), and R = diag(R,, R,, . . . , RM). Then form the 
matrix 

G=sH+H*s~-H~RH-Q. (7) 

It is shown  in [I] that if Q is positive definite, then the interconnected 
system is both input-output stable and (with  some  minor  technical 
assumptions) asymptotidy stable in the sense of Lyapunov. The input- 
output stability result is of no  relevance  here  because  the  system (2)-(4) 
has no external  inputs. For asymptotic stability, we shall assume that the 
smoothness and similar assumptions listed in [I]  are satisfied. 

Notice that the above result applies to linearly  connected  subsystems, 
whereas we have nonlinear (and not necessarily  memoryless)  intercon- 
nections. To get around this problem the +g wiU be treated as separate 
subsystems. This produces a total of NZ+ N subsystems. The first N, 
namely, the ori@  subsystems, are passive. The remainder are de- 
scribed by 

yj=+u(ui) fori=N+1;..,N2+N 

where the integers k and I are specified  uniquely by i= Nk+ 1. (N of 
these  subsystems,  namely the +fi,  are fictitious and will not be. con- 
nected to anythmg; but they are included to keep the notation simple). 
The interconnection matrix is 
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0 1 
where I denotes an N X N identity matrix, A ( ~ = d i a g ( a , , , a , ~ ~ ~ , u , , ) ,  
and A @ )  is the matrix  with  elements 

For 1 < i < N, subsystem  i is (O,p,ai; $)dissipative for any real p > 0. 
S i i l y  the  remaining  subsystems are (-p,O,p)-dissipative for any 
p>O. This leads  to 

Q = diag(0, - P ( l ) ,  - P(2), . . , - p ( r ) )  

S=diag(P@,O,O,. * .  ,O) 
R=diag(P(O)(A(o))-‘,P(’),P@),. . . , P ( N ) )  

where the Ptk) are arbitrarily chosen  positive  definite diagonal matrices. 

111. THE STABIUIY CRlTFlRION 

Before  proceeding, we need the  following definition. 
Definition [5] :  The matrix A is quasi-dominant if there  exists  a  set of 

real 4 > 0 such that 

There is a very  simple  test for quasidominance [5].  Let the matrix a 
be defined  by 

(I..= a,. a, ” 
iv= - luvl, forj+i. 

Then A is quasidominant iff all leading principal  minors of a are 
positive. 

Theorem If A is quasidominant, then every  system constrained by 
(2)-(4) is stable. 

Proof: The transpose of a quasi-dominant matrix is also quasi- 
dominant. This means that there are real numbers (4 ,  i=  1,. * * ,N} and 
(ei,  i= 1,. ,N), all positive,  such that 

and 

Let the diagonal matrices P(k) be defined by 

With this choice it is easily  shown that 6 in (7) is  block diagonal with 
each  block quasidominant  and therefore positive  definite. 0 

Quasidominance of A is also necessary for absolute stability, in the 
following  sense: if A is not quasi-dominant, then there exists  a  system in 
the class  described by (2)-(4) which  is not asymptotically  stable.  A 

simple  example is provided  by letting each  passive  system be an integra- 
tor, and by setting g ( u ) =  usgnqii. 

Although  the  theorem above provides  for  Lyapunov stability, we have 
not explicitly constructed a Lyapunov function.  However, this can be 
done in hindsight using the methods of [I]. The result is a function 

where the +i are storage functions [l] for the  passive  systems, and the +g 
are storage functions for the I)@ interconnection subsystems. If any 
interconnection is memoryless,  then the corresponding +@ will be  zero. 
In the particular case  where  each  passive  system has state equation 

xi=ui ,  and each +bij is simply  a  time  delay q,, we recover  system (1). 
When the storage functions are evaluated, the result is a Lyapunov 
function 

IV. CONCLUSIONS 

Quasi-dominance of the interconnection matrix is a  known  sufficient 
condition for stability of interconnected passive  systems [ 11. It is hardly 
surprising that quasidominance is also sufficient for connective stability 
in the sense of  [3]. It has now been shown that it is sufficient for a  much 
stronger form of connective stability, in which the perturbations in the 
system  may  include, for example, arbitrary time  delays. 
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On the Lyapunov  Matrix  Equation 

STANISLAW BIALAS 

Abstmct-In this paper the inequality which is satisfied by the determi- 
nant of the solution of the Lyapunov matrix equation A’Q+ QA = - D is 
presented. The result makes possiale a lower estimate of product eigenval- 
ues of the matrix Q and dependence from eigenvalues of the mahices A 
and D. This result corresponds to those presented io [2] and [3l, where an 
estimate of the extremal eigenvalues of the matrix Q is presented. This 
estimate depends on the eigenvalues of the matrices A and D. 
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