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Fig. 2. Deduction of the phase-margin equation in the single-input case.

An interesting special case of Theorem 3 is K;=0, in which situation
one obtains the robustness sector [0, c0) by picking (A4, Q) observable
and solving

ATP+P4A=—-0.

L =PB then yields an infinite gain margin, a 90° phase margin, and 100
percent gain reduction tolerance. These are so-called Lyapunov designs.
It is possible to show that all the L’s thus obtained are also linear-
quadratic optimal designs, but by considering them as such, it would not
be possible to guarantee this robustness sector.

4) All of the results of Theorems 1 to 3 admit an optimal control
interpretation. It is easily verified using the by now standard frequency
domain manipulations, which yield the results of [1} and its multivariable
extensions, that using

J= f (|%|2+267CTx+xTMx) dt

on x=Ax+ Bu with C and M such that
|#)?4+2u7CTx + xTMx > v2|u|2(Jy|< 1)

will yield a robustness sector (1/(1+|y[),1/(1—|v|)). Similarly, if
Ju|2+2uTCTx+xTMx < y2|u|2(Jy| > 1),

and if the optimal control problem has a solution, which is then not
guaranteed, one obtains a robustness sector (1/(1—[v]),1/(1+]v]). By
multiplying the optimal gain by an appropriate factor, it is possible to
obtain an arbitrary preassigned robustness sector. Theorems 1 to 3 are
easily interpreted in this vein. The performance criterion is

fo°°(|u|2+£—)(2 TDTx+| DT |2+xTQx))dt
1

and the gain used is (K, +K,)/2K, K, times the optimal gain.

The idea of including a cross-product term 2uTCTx in the cost
functional deserves in our opinion some attention in the linear-quadratic
theory, where often only the case (uTRu+x7Mx) with R=R7>0 and
M=MT >0 is treated. This extra flexibility makes it possible to generate
optimal control laws that may be superior from the sensitivity or accu-
racy point of view. For a treatment of such optimal control problems,
see [9].

5) The theory is easily generalized to the case that X and K, become
arbitrary diagonal matrices. This admits robustness design with unequal
gain and phase margin requirements in the different loops.

APPENDIX

Proof of Proposition 1: Consider first the single-input case. The gain-
margin and gain reduction tolerance assertions are immediate from the
definitions. To deduce the phase-margin result, consider Fig. 2, whict
has been drawn for the case K| <0< K.
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It follows from the circle criterion that the condition on the Nyquist
locus of G(s)=L¥(sI—A)~'B pertaining to condition (4) is that it be
contained in a circle through (—1/K,,0) and (—1/K,,0), symmetric
with respect to the real axis. This implies that the Nyquist locus inter-
sects the unit circle at an angle at least ¢ degrees away from the negative
real axis. Inserting the coordinates (— cos(¢), —sin(¢)) into the equation
of the circle bounding the Nyquist locus yields

2 -1/K,+1/K,\?
(—cos(¢)———‘—l/xl;1/K2) +(—sin (¢))2=(_‘—_/ 12+ 4 2)
whence
K\ K,+1
cos(9)= Bk

The multivariable case may be reduced to the above situation by using
the fact that a unitary matrix is unitarily equivalent to a diagonal one. [

REFERENCES

[1] R. E. Kalman, “When is a linear control system optimal?,” Trans. ASME, J. Basic
Eng., vol. 86, pp. 1-10, 1964,

2] G. Zames, “On the input-output stability of time-varying feedback systems” (Parts I
& D), IEEE Trans. Automat, Contr., vol. AC-11, pp. 228-238, 465-476, 1966.

[3]1 J. C. Willems, The Analysis of Feedback Systems. Cambridge, MA: M.LT. Press,
1972,

[4] M. G. Safonov and M. Athans, “Gain and phase margins for multiloop LQG
regulators,” IEEE Trans. Automat. Contr., vol. AC-22, pp. 173-179, 1977.

{5} P. K. Wong, G. Stein, and M. Athans, “Structural reliability and robustness
properties of optimal linear-quadratic multivariable regulators,” Preprints, Helsinki
IFAC Congr., 1978, pp. 1797-1805.

[6] P. Molander, “Stabilisation of uncertain systems,” Dep. Automat, Contr., Lund
Inst. Technol, Lund, Sweden, CODEN: LUTFD2/(TFRT-1020)/1-111/(1979),
1979.

[7] V. M. Popov, Hyperstability of Control Systems. New York: Springer, 1973.

[8] P. Faurre, M. Clerget, and F. Germain, Operateurs Rationnels Positifs.
Dunod, 1979. )

[9] J. C. Willems, “Least squares stationary optimal control and the algebraic Riccati
equation,” IEEE Trans. Automat. Contr., vol. AC-16, pp- 621-634, 1971.

Paris:

[10] C. A. Desoer and M. Vidy Fe Sy Input—-Output Properties.
New York: Acadelmc 1975
[11] M. Vid N Analysis. Englewood Cliffs, NJ: Prentice-Hall,

1978.
B. Friedland, “Limiting forms of optimal stochastic linear regulators,” in Proc. Joint
Automaz. Contr. Conf., 1970, pp. 212—-220.

[12]

Connections Between Finite-Gain and Asymptotic
Stability

DAVID J. HILL anp PETER J. MOYLAN

Abstract—The relationship between input-output and Lyapunov stabil-
ity properties for nonlinear systems is studied. Well-known definitions for
the input-output properties of finite-gain and passivity, even with quite
reasonable minimality assumptions on a state-space representation, do not
necessarily imply any form of stability for the state. Attention is given to
the precise versions of input-output and observability properties which
guarantee asymptotic stability. Particular emphasis is given to the possibil-
ity of multiple equilibria for the dynamical system.

I. INTRODUCTION

For causal linear time-invariant systems, there are well-known strong
equivalences among a variety of definitions of stability [1]. In particular,
£, finite-gain stability implies, under minimality assumptions, global
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asymptotic stability in the sense of Lyapunov. It is tempting to suppose
that a similar connection exists for a broad class of nonlinear systems.

To a certain extent this issue has been settled by a theorem owing to
Willems [2]. One of the results in [2] states that a uniformly observable
realization of an input-output stable dynamical system, with a reachable
state-space, is globally asymptotically stable. However, Willems’ defini-
tion of uniform observability is a strong one which excludes many
interesting nonlinear systems—particular reference being to systems
with multiple equilibria. It will be shown in this paper that, if Willems’
definition of global observability is replaced by a similar local definition,
then input-output stability does not necessarily imply local asymptotic
stability. In fact, the system can be completely unstable in the sense of
Lyapunov.

In view of this negative result, we shall restrict attention to those
situations where input-output stability is taken to mean finite-gain input-
output stability. One well-known definition of finite-gain [3] is

|| Pry || < k|| Prull+8

in standard notation. (A precise statement is given in Definition 1.) In
earlier work on input-output properties—see, for example, the treatment
in {4]—the above definition was used with 8=0. Generally speaking,
there seems to have been no consideration given to the difference
between the two definitions (8=0 or 8 allowed to be nonzero) except in
the case of memoryless systems. A central result of this paper is that the
presence of a nonzero § can make a big difference to internal stability
properties of nonlinear dynamical systems.

The example (Section V) which is used in this paper to illustrate the
above points arose initially from the guthors’ examination of a nonlinear
electrical circuit. It appeared, paradoxically, that a circuit consisting of a
passive nonlinear capacitor and a linear positive resistor was totally
unstable. The difficulty turned out to be one of defining the term
“passive” [5]. A plausible definition [3] is

{Pru,Pry>> -8

but again there is the question of whether 5 must be zero, or an arbitrary
real constant. It turns out that issues related to passivity and to finite-gain
stability can be conveniently treated in parallel by working within the
framework of so-called dissipative systems [6]-[9]. This will be the
approach adopted in this paper. There are two important features of the
theory of dissipative systems. First, and of vital importance to this paper,
there is a connection between input-output properties and properties of a
state-space representation in terms of the existence of energy-like func-
tions of the state. These functions can often serve as Lyapunov func-
tions. Second, the formulation of general stability results for intercon-
nected systems is facilitated. This feature is not of concern here; the
basic ideas and results have been presented elsewhere [6}], [9]. However,
it is worth noting that the results to be presented here also have
independent interest as improved lemmas in the study of interconnected
systems stability.

The structure of the paper is as follows. Section II presents notation
and definitions for concepts to be studied. The setting is somewhat more
general than usual insofar as it allows explicitly for the effect of different
initial states on input-output behavior. Sections III and IV contain the
main stability results. In Section V an example is given and Section VI
looks briefly at a connection between finite-gain and exponential stabil-

ity.

II. NOTATION AND DEFINITIONS

The state-space, input signal space, and output signal space will be
denoted by X, 9., and %,, respectively (the subscript denotes that the
space is an extended one in the usual sense [3], [4]). Elements of 4, and
%, are functions of time and take their values in linear spaces U and Y,
respectively. If u€Q,, then u(¢)E U denotes the value of u at time t€YJ
(and similarly for elements of %,). The time line Jis either a semi-infinite
interval [#,,c0) on the real line, or the infinite sequence {¢g,71,-°" ),
depending on whether one is interested in continuous-time or discrete-
time systems. The causal truncation operator Pr truncates a signal at
time T; by a mild abuse of notation, Py will be used to denote the causal
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truncation operator on either @L, or %,. It is assumed that P u belongs
to some inner product space AU, for every u€Ql, and every T€9. A
similar assumption relates elements of %, to an inner product space %.
The notation {u, o)y will be used as an abbreviation for {Pyu, Pro),
and similarly ||u||; means || Pru||, where {-,-> and ||-|| denote inner
products and norms.

The input-output mapping, assumed to be causal and invariant under
time shifts, depends on the initial state x,€X. That is, we write y=
G(xg)u where G(xg): U,—%, is an operator depending on xq. For any
region @CX, G(R) denotes the family {G(x4): xo,€Q}. In many appli-
cations, 2 will consist of a single point. [In such cases, we shall make no
distinction between G() and G(xq).]

A complete input-output representation of a dynamical system is given
by G(X). We also assume a time-invariant state-space description of the
dynamical system with the state transition mapping y: §2XX XU, —>X
and the readout mapping r: XXX U—Y satisfying the usual axioms
[18). These mappings describe the time evolution of the state and output
according to x(£)=v(¢, tg, x(1y), u) and y(¢t)=r(¢, x(¢), u(z)). The state-
space X is assumed to be a normed space.

Definition 1: G(R) is weakly finite-gain stable (WFGS) if there exists a
function B: R—R and a constant kK ER such that

NG (xo)ullr<kllullz+B{xq) 1)

for all ¥€9,, all TET and all x,€Q. If B(x,) is identically zero in Q,
we call G() finite-gain stable (FGS).
Consider the memoryless continuous linear operators Q: ¥,—%,, S:
A, —>%Y, and R: U,—-U,, where both Q and R are self-adjoint.
Definition 2: G(R) is weakly (Q, S, R)-dissipative if there exists a
function 8: 2—R such that

{G(x0)u, QG (xo)udr +2(G(xp)u, Sujr +{u, Rupr +B(xy) >0
@

.of all u€,, all T€T and all x,€Q. If B(x,) is identically zero in £,
we call G(R) (Q, S, R)-dissipative.

Definjtions 1 and 2 generalize corresponding definitions in [3) and [9),
respectively, by explicitly allowing for dependence of input-output prop-
erties on the initial state x,. In the literature, the term “finite-gain
stable” is used to mean either FGS or WFGS (without x, dependence).
The distinction between the two will be important in this paper where
the emphasis is on nonlinear systems. (For linear systems with zero
initial state, there is no loss of generality in setting 8=0 in (1) and (2).)
The property of dissipativeness was first introduced by Willems [6]. His
definition, in state-space terms, is different from the input-output defini-
tion above. However, we will see that it is essentially equivalent to the
present definition of weak dissipativeness. The distinction above between
“dissipative” and “weak dissipative” is new. For brevity, we will con-
tinue to use these terms with the context making clear which triple
(Q, S, R) is meant.

A minor point to notice is that the spaces @, and %, must be related
in such a way that the inner product <y, Su >, makes sense. If § is zero,
it is possible to drop the assumption that @ and % are inner product
spaces. With no inner product defined—which happens, for example, in
€, spaces with pst2—one can simply replace {w,udy by |lu|%
throughout and work only with norms.

We need some notion of reachability and observability. In the defini-
tions below, a continuous function f: R, —~R, is called a class K
function if f(0)=0, and if it is strictly monotone increasing [10]. Also,
d(x, ) denotes the distance of x from , where

d(x,2)= inf - .
(x,2)= inf lx—xol
Definition 3: A region X;CX is uniformly reachable from QcCX if

there exists a class X function 8, and for every x; EX there exists x, €8,
finite ¢, > ¢y, and ¥ €, such that x; =y(7,, 75, x4, #) and

lu)? < 8(d(x,,2)).
Definition 4: A region X,CX is zero-state detectable (ZSD) with

respect to 2 C X if there exists a class I function « and a real constant
Tt such that
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1G(x1)0117> e d(x1,2))

for all x,eX;—Q.

Zero-state detectability may be thought of as a weak form of observa-
bility. It implies that, with zero input, the outputs resulting from initial
states outside Q are distinguishable from those resulting from initial
states inside £. It is somewhat similar to Willems’ “uniform observabil-
ity” [2], except that in [2] uniform observability is a global property (with
Q effectively being a single point).

Finally, the general connection between finite-gain and internal stabil-
ity properties will be in terms of asymptotic stability. Interpreting the
subset £ of X as a set of “rest states” for the system, it is natural to
consider local asymptotic stability of Q. This is stability in the sense of
Lyapunov, plus the property that, with zero input, all state trajectories
starting in a region containing Q tend to @ as time evolves [11]. When &
contains only a single point, it becomes reasonable to consider global
asymptotic stability where all trajectories starting in X tend to 2.

III. INPUT-OUTPUT RESULTS

Dissipativeness is a generalization of finite-gain stability, in the sense
that (— 1,0, k21)-dissipativeness is precisely equivalent to inequality (1)
with 8=0. The corresponding “weak™ properties are not so closely
linked, but one can still get the following result.

Theorem 1: If G(R) is weakly (Q, S, R)-dissipative with @ strictly
negative definite, then G(Q) is WFGS.

Proof: With @+pI<0 for some scalar p>0, a straightforward use
of norm inequalities similar to arguments in [9] shows that (2) implies
(1), although with a different 8. O

For dissipativeness, there is a stronger connection which is easily
obtained.

Theorem 2: G(R)is (Q, S, R)-dissipative with Q strictly negative defi-
nite iff G(Q) is FGS.

Proof: In the proof of Theorem 1, if 8 in (2) is identically zero, then
one arrives at the version of (1) with 8 zero.

The converse is immediate. O

The next result is somewhat trivial, but it helps to demonstrate the
significance of 8.

Theorem 3: If G() is weakly (Q, S, R)-dissipative, and X; is uni-
formly reachable from Q, then G(X,) is weakly (@, S, R)-dissipative.

Proof: Choose any x, €X,, and then any #, >y, ¥EQU, and x,€Q
such that x, =y(7y, Zy, Xy, u). Let u(#) be arbitrary for 1>>¢,. Inequality
(2) becomes, by time-invariance,

G(x)u, QG (%)) ud>r+2{G(x1)u, Sudp+<u, Rupr+Bo (%) >0
where
Boew(%1)=B(x0)+<G(x0)u, QG(xg)u ),
+2{G(xg)u, Sud, +<{u, Ruj,.

Note that B, depends only on x,, because the # in the definition of
Boew is the specific u chosen to transfer the state from x, to x,. It follows
that G(x,) is weakly dissipative. O

The significance of this theorem is most obvious when B(x,)=0. If
the system is dissipative with respect to one initial state (say, the origin),
then it is weakly dissipative with respect to other reachable initial states.
A similar statement holds, of course, in connection with finite gain. One
can therefore think of 8 as allowing for the effect of nonzero initial
states. If in addition Q is strictly negative definite, then from Theorem 1,
and the definition of uniform reachability, it is not hard to show that
Bocw is bounded by a class K function. This fact will be used in the proof
of Theorem 6.

IV. ASYMPTOTIC STABILITY

An important property of a (weakly) dissipative system is that it
possesses a scalar-valued energy-like function, which, under certain
circumstances, can act as a Lyapunov function. The first two results of
this section relate to the details of this property.

Theorem 4: For some X, CX, G(X)) is weakly (@, S, R)-dissipative
iff there exists a function ¢: X,—R, with ¢(x)> 0 for all x€E€X;, such
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that
(X)) +<», @ r+2(p, Sudr+{u, Ruyr>$(x;) 3)

for all x,€X), all 4€9,, and all T> ¢y, where y=G(x,)u and x,=
(T, 1y, Xy, u).
Proof: For brevity, let

E(uay’toaT)=<yaQy>T+2<y’S">T+<ua R“>T- (4)

(By time-invariance, values of E depend on the difference (7—¢,) rather
than on ¢, and T separately, but including both times in the notation
improves the clarity of the proof.) Define

o(x)=— inf E(u,G(x)u,1,,T).
uesU,
T>4

Because the infimization includes the possibility T'=¢,, it follows that
¢(x,)>0. For any ¢, > ¢, and T3> ¢,, we also have

$(x)> —E(u,G(x)u, b1, 1) —E(u, G(x3)u,t,,T)

where x,=4(13, 1, x,, ). Because this inequality holds for all u, we
have in particular

o(x;)> —E(u,G(x))u,t;,t)—~ iéJéLE(u,G(xz)u,tz,T)

T>t,
from which (3) follows. Inequality (2) implies that ¢(x,) < 8(x,), s0

0<p(x)< o0 forall xEX,.

The converse is easily seen by noting that (3) implies
QD7+ 2y, Sudp+<u, Rudr+é(x)>0. O

A corresponding result for dissipativeness is as follows,

Theorem 5: Assume that X, CX is uniformly reachable from QCX.
Then G(2) is (Q, S, R)-dissipative iff there exists a function ¢: X;—R
satisfying the conditions of Theorem 4 plus ¢(x)=0 for all xEQ.

Proof: If G(R) is dissipative and X; reachable from £, then Theo-
rem 3 gives that G(X,) is weakly dissipative. Following the proof of
Theorem 4, it only remains to show ¢(x)=0 for all x €. This is implied
immediately by the bounds

0<¢(x)<B(x)

Again, the converse is a direct consequence of (3). O

The function ¢ in (3) is called a storage function and, in general, is
nonunique [6]}, [7]. It has the interpretation of stored energy since (3)
provides an expression of energy balance for the system. This requires
E(u, y,ty,T) to be regarded as the energy input to the system on time
interval [#y, T']. The original definition of dissipativeness given by Wil-
lems [6] was just that there exists a function ¢ satisfying the conditions of
Theorem 4. Hence, this result establishes an equivalence between Wil-
lems® definition and the one for weak dissipativeness given here. Theo-
rem 5 is a generalization of a result in [7).

The appealing feature of Theorems 4 and 5 is that they preserve the
spirit of Kalman-Yakubovich—Popov theory for linear systems, which
has found extensive application in other areas of stability theory [12].
That is, an equivalence is provided between input-output properties and
state-space properties. For linear finite-dimensional passive systems,
Theorem 5 with Q=0, §=1, R=0 collapses directly to the Kalman—
Yakubovich—Popov lemma, on noting that passivity corresponds to
positive-real transfer functions and using arguments similar to those in
(6], [7}.

Suppose now that E(0, y, 75, T) <0 for all y and all T > #,. With zero
input, inequality (3) shows that ¢(x(2)) is nonincreasing with time, and
strictly decreasing given a suitable observability assumption. The result
is that ¢(x(2)) asymptotically approaches one of its local minima, if it
has any. The following theorem gives a precise connection between
dissipativeness and asymptotic stability.

Theorem 6. Suppose G(R2) is (Q, S, R)-dissipative for some strictly
negative definite Q. Let X,={x: d(x,Q)<d,)}, for some d,>0, be

forall xEX,.
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uniformly reachable from £ and ZSD with respect to 2. Then there
exists some d,> 0 (with 4, dependent on d,) such that, with zero input,
all state trajectories starting in X, = {x: d(x, 2)<d,} remain in X, and
asymptotically approach £.

Proof: For any ¢ > t; and x(¢) €X,, inequality (3) with =0 reduces
to

$(x(t+TY) < p(x(2)) —pald(x(r), 2)) 5)
where g, as in the proof of Theorem 1, arises from negative definiteness
of O, and a and T are as introduced in the ZSD definition. Because
&(x(z+T)) > 0, this gives a lower bound on ¢(x(7)). Uniform reachabil-
ity provides an upper bound (see the comments following Theorem 3), so
that

pa(d(x,R)) <p(x)<{(d(x,2)) for all xeX,

where a and { are class I functions. With d,={"(pa(d,)), it follows
easily that d(x(#,), @) <d, implies d(x(1), R)<d, for all £ 5 ¢,.

Because ¢(x(?)) is nonincreasing and bounded below by zero, it
converges monotonically to some limit ¢,. This means that for any ¢>0
there exists ¢; > ¢, such that

Bo < ¢ (x(2)) < po+pale)

Combining this inequality with (5), it follows that d(x(z), 2)<e for all
t>1). a
Some comments on the proof of Theorem 6 are appropriate. One can
prove that ¢y=0, but this fact is irrelevant to the proof. Notice also that
if € is not a connected region in X, then X; and X, need not be
connected. This can happen when the system has multiple equilibria. An
interesting feature of the proof is that standard Lyapunov theory results
were not used. These require smoothness constraints on the Lyapunov
functions which cannot be easily guaranteed for storage functions ¢.

For systems which are only weakly dissipative, so that ¢(x) need not
be zero for x€Q, the proof fails. This is because there is no class K
upper bound on ¢, so that, informally, the inequality ¢(x(¢)) < p(x(#p))
need not describe a region containing 2.

The important conclusions so far are that, with Q strictly negative
definite and suitable reachability and observability assumptions, 1) dis-
sipativeness implies both finite-gain stability and local asymptotic stabil-
ity; and 2) weak dissipativeness implies weak finite-gain stability, but not
necessarily asymptotic stability. One can also interpret these conclusions
as saying that FGS implies local asymptotic stability, but WFGS does
not. These results yield a considerable generalization of one for finite-
dimensional nonlinear systems in [8].

It is worth pointing out that the proof of Theorem 6 does not rely on
the quadratic nature of E(-, -, {5, T) shown in (4) except for the require-
ment that E(0, y, 5, T)< —p||»||2. In fact, most of the results of this
paper generalize easily to situations where £ is an arbitrary nonlinear
functional satisfying some very weak assumptions. The exceptions are
Theorems 1 and 2, which would require the relatively strong assumption

E(u,y,t5, T)<f(l| Mu||3) —g(lly+Nu (%)

foraliz>1¢,.

for some continuous causal linear operators M and N, and functions f
and g of a fairly restricted form. In any case, dissipativeness in this
general sense is likely to be difficult to test, whereas there are, at least for
finite-dimensional systems, computationally feasible tests for dissipative-
ness in the sense of our Definition 2 [7]). These observations suggest that
there is little point in extending the results to the nonquadratic case.

V. EXAMPLE
Consider the system with finite-dimensional state equations
x=f(x)+H(x)+2vu, x(0)=xo
y=h(x)+yu

where v is a scalar and the signal spaces are £”"(R ). The functions f(-)
and f,(-) are assumed to have sufficient smoothness to ensure unique
solutions, and to have the properties
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D HO=£0)=0;
2) fI(x)f(x)>0 for all x;
3) £(*) is a gradient map, and there exists a constant k > 0 such that

o(x) = - [T () du+ >0
for all x.
Using £, norms and inner products, it turns out that
VIuliF— 1y IIF=<f, A=< ¥Dr
> ¢ (x(T)) —¢(xo)-
[This is, of course, inequality (3).] Writing this as
7 1F<v?izelF+e(x0),

it follows that the system is WFGS, and FGS if ¢(x,)=0. Asymptotic
stability can also be studied by using $(x) as a Lyapunov function. With
u=0, we have

*(x) < —F(x)f(x)-
Now consider the following three cases, with x taken to be a scalar for
simplicity.
Case 1. Let fi(x)=—x7 and f(x)= —ax?, where a>0 and ¢,, 4,
are odd integers. Then

and ¢(0)=0.
Case 2. Let fi(x)=0 and f,(x)= —asin x where a >0. Then

$(x)=a(l—cosx)

and ¢(xg)=0 for the infinite number of isolated points x¢=*2nx
where n=0,1,2,....
Case 3. Let fi(x)=x and fy(x)=ax/1+x?* where a >0. Then

¢(x)=%(-§—arcta.nx2)

and ¢(x)>0 for all finite x.

The three cases are illustrated in Fig. 1. In Cases 1 and 2, we have
FGS and asymptotic stability. (For Case 2, take @={x,: x¢= *2n7}.)
In Case 3, we have only WFGS; and the system has a unique equilibrium
at x,=0, which is completely unstable in the sense of Lyapunov. In all
three cases, the reachability and ZSD assumptions of Theorem 6 are
satisfied. This illustrates that a system which is only weakly FGS can be
completely internally unstable.

V1. EXPONENTIAL STABILITY

We now know that finite-gain stability implies local asymptotic stabil-
ity. For linear finite-dimensional systems, this connection is actually an
equivalence [1]. However, for nonlinear systems, it is known that even
globally asymptotically stable systems need not possess input-output
stability properties [13], [14]. It turns out that for a large class of systems,
global exponential asymptotic stability (GEAS) does imply finite-gain.

Consider the finite-dimensional state-space representation

x=f(x)+g(u)
y=h(x)

(6

where the functions f(-), g(), and h(-) are assumed to have sufficient
smoothness to ensure unique solutions for £, signal spaces. In particular,
suppose that f(0)=0, g(0)=0, A(0)=0, and f(-) is a C' function with
bounded gradient in the sense that |[Vf(x)| < L Vx, where L is a constant
and |-| denotes the Euclidean norm.

Theorem 7. If the origin is GEAS for the autonomous system x=4(x)
and functions g(-) and A(-) have finite-gain (with respect to Euclidean
norm), then system (6) is FGS.
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Proof: Tt is 2 known result [15] that GEAS for x=f(x), with f(-)
possessing the above mentioned smoothness properties, implies the ex-
istence of a Lyapunov function ¥V: X—R . satisfying

Ve —elxl? (7a)

IV¥V|< ep|x]. (7b)

Here ¥ refers to the derivative along system trajectories.
For x(0)=0 and some 7>0, consider

[ 2istewi-1x a2 [Tviiseot+ 97T )

using (7)

> c—ll[V(X(T))— V(x(0))]

>0 for x(0)=0.

Hence

T 2 <2 T
J e 2 [FlgGlix dr.

By the Schwarz inequality, this gives

€2
Ixllz< V;l- [tg (el -

Then finite-gain of #(-) and g(-) gives the result. |

A special case of this theorem has been useful in stability theory for
interconnected systems [9]. Input-output and Lyapunov stability results
feature similar stability conditions with respect to structure, but differ
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insofar as the isolated subsystems are typically taken to be FGS and
GEAS, respectively. In [9), it is pointed out that a connection similar to
that of Theorem 7 offers a considerable degree of unification to these
previous results.

VII. CONCLUSIONS

The contribution of this paper is to provide some further clarification
of the relationship between input-output stability and Lyapunov stability
properties. All versions of input-output stability do not necessarily imply
internal stability, even for reasonable minimality assumptions. Theorem
6 states conditions under which finite-gain implies local asymptotic
stability, This complements a result by Willems [2], which deals only
with global properties. The class of systems for which this connection is
made is thus extended to include systems with multiple equilibria.
Theorem 7 considers the reverse connection and gives a class of systems
for which global exponential asymptotic stability implies finite-gain
stability.

In the process of developing the stability results, improvements have
been made to the theory of dissipative systems. Theorems 1 and 2
sharpen an important lemma in the stability theory of interconnected
dissipative systems [9]. Theorems 4 and 5 represent a direct generaliza-
tion of the Kalman-Yakubovich~Popov lemma. A previous version of
Theorem 5 for £, signal spaces provided new Lyapunov stability results
for interconnected nomnlinear systems [9]. This result appears to be
fundamental in nonlinear systems theory. We have noted that the
dissipative systems results do not require the function E(-, -, 7,4, T) to be
quadratic. Very recently, Safonov and Athans [16] have considered what
are essentially nonquadratic dissipation inequalities. It is interesting that
they use some Lyapunov stability theory arguments in deriving input-
output stability, but the development does not facilitate understanding
of what internal stability properties are inherited by an input-output
stable system.

Consideration of connections between input-output and Lyapunov
stability properties raises some challenging problems. Solution to these
are important for progress in applications. Difficulties arise in systems
with multiple equilibria—for example, power systems. This area is
attracting attention for applications of system theory and interest has
been shown in the application of input-output methods. It has been
claimed [17] that this is not possible without substantial modification to
the presently known theory. The claim is based on the idea that input-
output stability generally implies global asymptotic stability. The results
of this paper suggest that if input-output methods are not fruitful in
power systems, it will not be for that reason.
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Local Stability of Composite
Systems— Frequency-Domain Condition and
Estimate of the Domain of Attraction

MASAMI SAEKI, MITUHIKO ARAKI, anp BUNJI KONDO

Abstract—This paper is concerned with such compesite systems whose
subsystems contain one nonlinearity each and whose interconnections are
functions of the scalar outputs of subsystems. A frequency-domain condi-
tion which assures local asymptotic stability is given under the assumptions
that each nonlinearity satisfies 8 sector condition, that interconnections are
linearly bounded, and that linear parts of subsystems may have unstable
poles. In deriving the above result, such Lyapunov functions of subsystems
are constructed so that their weighted sum is a Lyapunov function of the
overall system. A method to estimate the domain of attraction based on the
above Lyapunov functions is also studied. When the bounds on nonlineari-
ties hold true in the entire space and when the linear parts do not have
unstable poles, the present condition turns out to be the same with the
L,-stability condition which was obtained before by Araki.

I. INTRODUCTION

The decomposition method of stability analysis is now recognized as a
powerful means for the study of large-scale systems. The principal idea
underlying this method was already included in the papers of Bellman
{1] and Matrosov [2]. Later, especially after 1970, many researchers have
derived a variety of results using this method [3]-[8]. This paper is also
concerned with the application of the decomposition method to large-
scale systems. Here we focus upon a specific class of systems consisting
of such subsystems which have been familiar to control engineers through
the absolute stability problem. Our intention exists not only in present-
ing a single stability condition for that class of systems but also in
showing a compact model of analysis which combines the classical
results obtained in the absolute stability study with the recent decom-
position method. The way of analysis followed in this paper would show
how to reach sharp results in other cases by applying the decomposition
method, which is sometimes blamed for being “too conservative.”

Thus, consider the composite system (CS) which is described by the
equations

y=cjx, m

j=l-m (2)

%=EW+@W’

u;= —¢j(yj! t)+gj()’|,‘ 3 Ymet)

where the scalar-valued functions ¢;(y;, ) and gy, -+, ¥y, f) are

assumed to satisfy

§vi<e(y, ‘)ngﬂj.)’jzs 9,(0,7)=0 3)
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for those values of y; restricted by

—P1; <Y< Py Jj=1e,m. &)
In the above, u; and y; are scalars; x;, b;, and ¢; are n -vectors; Fisan
n;Xn; matrix; 7;, P1j» and p, ; are positive constants; 8, is a nonnega-
tive constant; and §, is a constant less than 7;. Let x be the state vector
of the CS given by

x=(xir’.. ',X:)T.

Then, from (3) and (4), the origin x=0 is an equilibrium point of the CS.
It is stability of this equilibrium which will be studied in the following.

If (3) and (4) are satisfied for all values of y;, without restriction (5),
and if the linear parts (1) do not have unstable poles, we can use the
simple frequency-domain condition of [9] to assure L,-stability of this
system. Then we can automatically assure the existence of a Lyapunov
function and the global stability of the system by applying the general
results about L,-stability and existence of Lyapunov functions [22]-[25].
The purpose of this paper is to treat the case in which Z,-stability is not
obtained [i.e., the case where (3) and (4) hold true only locally as
assumed] and to show a concrete way of calculating the Lyapunov
function and the estimate of the domain of attraction. The special case
in which 7,=co was already treated in [8), where the major interest lay
in showing the parallelism between the Lyapunov stability analysis and
the input-output stability analysis. Here, we treat the general case and
also study the domain of attraction.

II. MAIN RESULTS

Concerning the asymptotic stability of the CS, we have the following
three theorems.

Theorem I (Stability Condition): Assume that the linear part (1) of
each subsystem is completely controllable and observable, and let

H)=c[(s1-F) '8, ®

Then, the origin x=0 of the CS is asymptotically stable if there exists a
positive number a; for each j such that

_ 1+ a)f(s)

=7 J 7
1+ G, —2,)4() @

hj(s)

is positive real, and if the 72X m matrix 4 — B is an M-matrix where

A=diag(a;), B=(8y) Jj,k=1,--,m. ®
Theorem 2 (Construction of Lyapunov Function): Assume the require-
ments of Theorem 1 are satisfied, and let 3 be a sufficiently small
positive number such that 4 —~ B—§8/ remains an M-matrix. Then, there
exist ¢,>> 0, a positive-definite n;X n; matrix F; and an n-vector ¢; which
satisfy
FTP+PFE=—qq] +({~a;+8)(n;+a;—8)c;e] —¢;1 (9)
Bib~ 5 (& +n,)e;=q; (10)

there exists a diagonal matrix D=diag(d;) with ;>0 which makes
MDM -T7DT positive semidefinite, where

. —t, . —t,
M=diag(%—2—j+aj—8), I‘=diag(‘nj2 J)+B Jj=lL---m

and the function v(x) defined by
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