
T'"' 

Fig. 2. Deduction of the phase-margin equation in the singlainput case. 

An interesting special case of Theorem 3 is K, = 0, in which situation 
one obtains the robustness sector [O,m) by picking ( A ,  Q) observable 
and solving 

ATP+PA= -Q. 

L = PB then yields an infinite gain margin, a 90" phase margin, and 100 
percent gain reduction tolerance. These are so-called Lyapunov designs. 
It is possible to show that all the L's thus obtained are also linear- 
quadratic optimal designs, but by  considering  them as such, it would not 
be possible to guarantee *his robustness sector. 

4) AU of the results of Theorems  1 to 3 admit an optimal control 
interpretation. It is easily  verified  using  the  by  now standard frequency 
domain manipulations, which  yield the results of [l]  and its multivariable 
extensions, that using 

on i=Ax+Bu with C and M such that 

I u J 2 + 2 u = c = x + x ~ M x ~ y 2 1 u 1 2 ( l y l g  1) 

will yield  a  robustness sector (l/(l+lyl),  l/(l-lyl)). Similarly, if 

lul2+2u=c=x+x=Mx<y2lu(2()yl> I), 

and if the  optimal control problem has a  solution,  which is then not 
guaranteed, one obtains a  robustness sector (1/( 1 - I y I), 1 /( 1 + I y I)). By 
multiplying the optimal gain by an appropriate factor, it is possible to 
obtain an arbitrary preassigned robustness sector. Theorems  1 to 3 are 
easily interpreted in this vein. The performance criterion is 

and the gain used is ( Kl + K2)/2 K, K2 times the optimal gain. 
The idea of including  a  cross-product  term 2uTCTx in the  cost 

functional deserves in our opinion some attention in the linearquadratic 
theory, where often only the case (uTRu+xTMx) with R=RT> 0 and 
M = M T > O  is treated. This extra flexibility  makes it possible to generate 
optimal control laws that may be superior from the  sensitivity or accu- 
racy point of view. For a treatment of such optimal control problems, 
see [9]. 

5) The theory is easily  generalized to the case that Kl and K2 become 
arbitrary diagonal matrices. This admits robustness  design with unequal 
gain and phase margin requirements in the different loops. 

APPENDIX 

Proof of Proposition 1: Consider first the single-input  case. The gain- 
margin and gain reduction tolerance assertions are immediate  from the 
definitions. To deduce the phase-margin  result,  consider Fig. 2, whick 
hasbeendrawnforthecaseKl<O<Kz. 

It follows from the circle criterion that the condition on the Nyquist 
l o c u s  of G(s)=LT(sZ-A)-'B pertaining to condition (4) is that it be 
contained in a circle through (- 1 /K2,0)  and (- l/Kl, 0), symmetric 
with  respect to the real axis. This implies that the Nyquist l o c u s  inter- 
sects the unit circle at an angle at least + degrees  away  from the negative 
real axis. Inserting the coordinates (- cos(+), -sin(+)) into the equation 
of the circle  bounding the Nyquist  locus  yields 

whence 

cos( +) = ~ 

K,K2+l 
K,+K2 

The multivariable case may be reduced to the above situation by  using 
the fact that a unitary matrix is unitarily equivalent to a diagonal one. 0 
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Connections Between Finite-Gain and Asymptotic 
Stability 

DAVID J. HILL AND PETER J. MOYLAN 

Abstrm-The relationship W e e n  inpnt-outpnt and Lyapumv stabii- 
ity properties for nonlinear system is studied. Wd-knom d e f i i  for 
the input- properties of finite-gain and passivity, even with qnite 
reasonable minimality assumptions m a state-spme representation, do not 
necessarily imply any form of stability for the state.  Attention is given to 

guarantee asymptotic stability. Particular emphasii is given to the possibil- 
ity of multiple  equilibria for the dynamid system. 

the precise versiopls of input-output and olk3efvabii properties whi& 

I. ~ O D U C X I O N  

For causal linear  time-invariant  systems, there are well-known strong 
equivalences  among  a  variety of definitions of stability [ 11. In particular, 
& finite-gain  stability  implies, under minimality  assumptions,  global 
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asymptotic stability in the sense of Lyapunov. It is tempting to suppose 
that a  similar  connection  exists for a broad class of nonlinear systems. 

To a certain extent this issue  has been settled by a theorem  owing to 
Wdems [2]. One of the results in [2] states that a  uniformly  observable 
realization of an input-output stable dynamical system, with a reachable 
state-space, is globally  asymptotically  stable.  However,  Wflems’  defini- 
tion of uniform observability is a strong one which  excludes  many 
interesting nonlinear  systems-particular  reference  being to systems 
with  multiple  equilibria. It will be shown in this paper that, if Willems‘ 
definition of global  observabdity  is  replaced  by  a  similar  local  definition, 
then input-output stability does not necessarily  imply  local  asymptotic 
stability. In fact, the  system can be completely unstable in the sense of 
Lyapunov. 

In view  of this negative  result, we shall  restrict attention to those 
situations where input-output stability is taken to mean finite-gain input- 
output stability.  One  well-known definition of finite-gain [3] is 

I I ~ , ~ l l < k l I ~ , u l I + B  

in standard notation. (A precise statement is given in Definition 1.) In 
earlier work on input-output properties-=, for example, the treatment 
in [4]-the above  definition  was  used  with /3=0. Generally speaking, 
there seems to have been no consideration given to the difference 
between the two definitions (p=O or p allowed to be nonzero)  except in 
the case of memoryless  systems. A central result of this paper is that the 
presence of a nonzero /3 can make  a  big  difference to internal stability 
properties of nonlinear dynamical systems. 

The example  (Section V) which  is  used in this paper to illustrate the 
above points arose  initially  from  the  authors’ examination of a nonlinear 
electrical  circuit. It appeared, paradoxically, that a circuit consisting of a 
passive  nonlinear capacitor and a linear positive  resistor  was  totally 
unstable. The difficulty turned out to be one of defining the term 
“passive” [5]. A plausible  definition [3] is 

( 3 u .  PTY ) > - B  

but again  there is the question of whether /3 must be zero, or an arbitrary 
real constant. It turns out that issues related to passivity and to finite-gain 
stability can be conveniently treated in parallel by working  within the 
framework of so-called  dissipative  systems [6]-[9]. This will be the 
approach adopted in this paper. There are two important features of the 
theory of dissipative  systems. First, and of vital importance to this paper, 
there is a  connection  between input-output properties and properties of a 
stataspace representation in terms of the existence of energy-like  func- 
tions of the state. These functions can often serve as Lyapunov  func- 
tions. Second, the formulation of general stability results for intercon- 
nected  systems is facilitated. This feature is not of concern  here; the 
basic  ideas and results  have  been  presented  elsewhere [6], [9]. However, 
it is worth  noting that the results to be presented here also have 
independent interest as improved  lemmas in the study of interconnected 
systems  stability. 

The structure of the paper is as follows. Section I1  presents notation 
and definitions  for concepts to be studied. The setting is somewhat  more 
general than usual i n s o f a r  as it allows  explicitly for the  effect of different 
initial states on input-output behavior.  Sections I11 and IV contain the 
main stability  results. In Section V an example is given and Section VI 
looks  briefly at a connection between  finite-gain and exponential stabil- 
ity. 

11. NOTATION AND DEFJNITIONS 

The state-space, input signal space, and output signal space will be 
denoted by X, Qe, and %e, respectively (the subscript denotes that the 
space is an extended one in the usual sense [3], [4D. Elements of Qe and 
“s, are functions of  time and take their  values in linear spaces U and Y, 
respectively. If uEQe, then u(t)EUdenotes the value of u at time r E S  
(and similarly for elements of I ) .  The time line Tis either a  semi-infinite 
interval [ to,  Q)) on the real  line, or the infinite sequence (to, t , ; .  . }, 
depending on whether one is interested in continuous-time or discrete- 
time systems. The causal truncation operator P, truncates a signal at 
time  by a mild abuse of notation, PT wiU be used to denote the causal 

~ ~ ~ ~ 

truncation operator on either Qe or t .  It is assumed that Pru belongs 
to some inner product space Q, for every u€Qe and every TES. A 
similar  assumption relates elements of to an inner product space 9. 
The notation ( u ,  u ) ~  will be used as an abbreviation for (P,u,  PTu), 
and similarly llull, means IIPTull, where (.;) and 1 1 . 1 1  denote inner 
products and norms. 

The input-output mapping,  assumed to be causal and invariant under 
time shifts, depends on the initial state xoEX. That is, we  write y = 
G(xo)u where G(xo): %e+%e is an operator depending on xo. For any 
region QCX, G(Q) denotes the  family {G(xo): ~ ~ € 5 1 ) .  In many appli- 
cations, 51 will consist of a  single point. [In such cases, we shall make no 
distinction between G(Q) and G(xo).] 

A complete input-output representation of a  dynamical  system  is  given 
by G(X). We also assume  a  time-invariant state-space description of the 
dynamid system  with the state transition mapping +: S2xXx%e+X 
and the readout mapping r: SX X X U+Y satisfying the usual axioms 
[18]. These mapping describe  the  time  evolution of the state and output 
according to x(t)=+(f, to, x(fO), u )  andy(t)=r(r, x( t ) ,  u(t)).  The state- 
space X is assumed to be  a  normed space. 

Definition I: G( Q) is weak& finite-gain  stable (WFGS) if there exists  a 
function /3: B+R and a constant k E R  such that 

I I G ( x o ) ~ l l , ~ k l l ~ l l T + S ( X o )  (1) 

for all uEQe, all TESand all xoEQ. If S(x0) is identically zero in 8, 
we call G(51) finitegain stable (FGS). 

Consider  the  memoryless continuous linear operators Q: %e+%e, S: 
Qe+9, and R :  %e+%e, where  both Q and R are self-adjoint 

Definition 2: G(Q)  is weak& (Q,  S, R)-dissipatioe if there exists  a 
function 8: S1+R such that 

(G(~~)~,QG(~O)~)T+~(G(~O)~,S~)T+(~,~)T+B(XO)>O 
(2) 

.or all uE9Le, all TESand all xoEQ. If p(xo) is identically zero in 3, 
we call G(Q) (Q, S, R jdissipatioe. 

Definitions  1 and 2 generalize corresponding definitions in [3] and [9L 
respectively, by explicitly  allowing for dependence of input-output prop 
erties on the initial state xo. In the literature, the  term  “finite-gain 
stable” is  used to mean  either FGS or WFGS (without x. dependence). 
The distinction  between the two will be important in this paper where 
the emphasis  is on nonlinear systems. (For linear  systems  with zero 
initial state, there  is no loss of generality in setting /3=0 in (1) and (2).) 
The property of dissipativeness  was first introduced by Willems [6]. His 
definition, in state-space  terms, is different from the input-output defd- 
tion  above.  However, we will see that it is essentially equivalent to the 
present  definition of weak dissipativeness. The distinction above between 
“dissipative” and “weak dissipative” is new. For brevity, we will con- 
tinue to use  these  terms  with the context making  clear  which  triple 
(Q, S, R) is meant 

A minor point to notice is that the  spaces %e and %e must be related 
in such  a  way that the inner product ( y ,  Su), makes sense. If S is zero, 
it is possible to drop the assumption that % and % are inner product 
spaces.  With no inner product defined-which  happens, for example, in 
e, spaces with p#2-one can simply  replace ( u , u ) =  by Ilull$ 
throughout and work only with norms. 

We need some notion of reachability and observability. In the defini- 
tions below, a continuous function f: R++R+ is called  a  class ‘x. 
function if j (O)=O, and if it is strictly monotone increasing [IO]. Also, 
d(x, Q) denotes the distance of x from 0, where 

d(x,Q)= inf IIx-xoII. 
X,EO 

Definition 3: A region X, G X  is uniformly  reachable from Q c X  if 
there  exists  a  class %function 6, and  for every x, EXl there  exists x,EQ, 
finite t ,  >to ,  and ~ € 3 ,  such that xl=+(tl, to ,  xo, u) and 

I lul l~,<S(~(x1,Q))-  

Dejnition 4: A region XI GX is zero-state detectable (ZSD)  with 
respect to OCX if there exists  a  class 3c function a and a real constant 
T> to such that 

__ 
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IIG(xl)OlI~.~a(d(x,,~)) 

for all x,EX,-P. 
Zero-state detectability may be thought of as a weak  form of observa- 

bility. It implies that, with  zero input, the outputs resulting from initial 
states outside P are distinguishable from those  resulting from initial 
states inside 51. It is somewhat  similar to Willems’ “uniform observabil- 
ity“ [2], except that in [2] uniform observability is a  global property (with 
0 effectively being a  single  point). 

Finally, the general connection between finitegain  and internal stabil- 
ity properties will be in t e r n  of asymptotic stability. Interpreting the 
subset D of X as a  set of “rest states” for the system, it is natural to 
consider local asymptotic stability of P. This is stability in the sense of 
Lyapunov,  plus  the property that, with zero input, all state trajectories 
starting in a region containing 51 tend to 52 as time  evolves [ll]. When 51 
contains only  a  single point, it becomes reasonable to consider  global 
asymptotic stability  where all trajectories starting in X tend to 51. 

111. INPUT-OUTPUT RESULTS 

Dissipativeness is a  generalization of finitegain stability, in the sense 
that (-z,O, k21)-dissipativeness is precisely  equivalent to inequality (I) 
with B=O. The corresponding “weak” properties are not so closely 
Wed, but one can still get the following  result. 

Theorem I :  If G(51) is weakly (Q, S, R)-dissipative  with Q strictly 
negative definite, then G(P) is WFGS. 

ProoJ With Q + p I  < 0 for some scalar p > 0, a straightforward use 
of norm inequalities similar to arguments in [9] shows that (2) implies 
(I), although with a different /3. 0 

For dissipativeness, there is a stronger connection which is easily 
obtained. 

Theorem 2: G(52) is (Q, S, R)-dissipative  with Q strictly  negative  defi- 
nite iff G(Q) is FGS. 

Prooj: In the proof of Theorem 1, if /3 in (2) is identically  zero,  then 
one arrives at the version of (1)  with fi zero. 

The converse is immediate. 0 
The next result is somewhat trivial, but it helps to demonsbate the 

significance of B. 
Theorem 3: If G(P) is weakly (Q, S, R >dissipative, and X, is uni- 

formly reachable from Q, then G ( X , )  is weakly (Q, S, R)-dissipative. 
Proof: Choose any x ,  EX,,  and then any t l  >to, uE%, and ~ ~ € 5 1  

such that x, =$( t l ,  to, xo, u). Let u ( t )  be arbitrary for t > r l .  Inequality 
(2) becomes,  by  time-invariance, 

<G(~I)~,QG(~,)~),+~(G(~,)~,S~),+<~,RI~T+B-(XI)>O 

where 

W ~ ( x l ) = B ( ~ o ) + < G ( x o ) ~ ,  QG(xo)u>r, 

+ 2 < G ( ~ o ) ~ , s u ) , , + < ~ , R u ) , , .  

Note that A, depends only on x,, because  the u in the definition of 
fin, is the specific u chosen to transfer the state from x. to x,. It follows 
that G ( x , )  is weakly dissipative. 0 

The significance of this theorem is most  obvious  when B(xO)=O. If 
the system is dissipative  with  respect to one initial state (say, the origin), 
then it is wed@ dissipative  with  respect to other reachable initial states. 
A similar statement holds, of course, in connection with finite gain. one 
can therefore thiuk of /3 as allowing for the effect of nonzero initial 
states. If in addition Q is strictly  negative  definite, then from Theorem 1, 
and the definition of uniform reachability, it is not hard to show that 
Bnew is bounded by a class ‘x. function. This fact will be  used in the proof 
of Theorem 6. 

Iv. ~ O T I C S T A B ~  

An important property of a  (weakly)  dissipative  system is that it 
possesses a scalar-valued  energy-like function, which, under certain 
circumstances, can act  as a Lyapunov function. The first two results of 
this section relate to the details of this property. 

Thwrem 4: For some  X, EX, G(X,) is weakly (Q, S, RMssipative 
iff there exists  a function (p: X,+R,  with + ( x )  > O  for all xEX,, such 

933 

(3) 

and x2= 

(4) 

(By time-invariance,  values of E depend on the difference (T-to) rather 
than on to and T separately, but including both times in the notation 
improves the clarity of the proof.) Define 

+(x,)= - inf E(u ,  G(x , )u ,  T ) .  
U E 9 L ,  

T>LI 

Because the infimktion includes the possibility T=t , ,  it  follows that 
+ ( x , )  > 0. For any t 2  t l  and T >  t 2 ,  we also have 

+(~1)>-E(u,G(xt)u,t~,~~)--E(~,G(X2)~,tzrT) 

where  x,=$(t,, t , ,  x,, u).  Because this inequality  holds for all u, we 
have in particular 

( p ( x 1 ) > - E ( U , G ( x , ) u , t l , t , ) -  inf E(u,G(x,)u,t,,T) 
U€QLe 

T> f2 

from  which  (3)  follows. Inequality (2) implies that +(x,) < &x,), so 

O<+(x)<oo  forallxEX,. 

The converse is easily  seen by noting that (3) implies 

<Y,Q>r+2<Y,Su),+<u,Ru),+9(x,)bO. 0 

A corresponding  result for dissipativeness is as follows. 
Theorem 5: Assume that X, EX is uniformly reachable from QYX. 

Then G(B) is (Q, S, R )-dissipative  iff there  exists  a function (p: X,+R 
satisfying the conditions of Theorem 4 plus (p(x)=O for all ~€51. 

Prmj If G(D) is dissipative and X, reachable from 52, then Theo- 
rem 3 gives that G(X,) is weakly  dissipative.  Following the proof of 
Theorem 4, it only  remains to show +( x) = 0 for all x E P. This is implied 
immediately by the bounds 

O<(p(x)</3(x) forallxEX,. 

Again, the converse is a direct consequence of (3). 0 
The function + in (3) is called  a storage function and, in general, is 

nonunique [a [7]. It has the interpretation of stored energy since (3) 
provides an expression  of energy balance for the system. This requires 
E(u, y, to, T )  to be regarded as the energy input to the system on time 
interval [to, TI. The original definition of dissipativeness  given by Wil- 
lems [6] was just that there exists  a function + satisfying the conditions of 
Theorem 4. Hence, this result  establishes an equivalence  between  Wil- 
lems’ definition and the one for weak dissipativeness  given  here.  Theo- 
rem 5 is a generalization of a  result in [7]. 

The appealing feature of Theorems 4 and 5 is that they  preserve the 
spirit of Kalman-Yalcubovich-Popov theory for linear systems,  which 
has found extensive application in other areas of stability theory [12]. 
That is, an equivalence is provided  between input-output properties and 
state-space  properties. For linear fite-dimensional passive  systems, 
Theorem 5 with Q= 0, S=Z, R = 0 collapses  directly to the Kalman- 
Yakubovich-Popov  lemma, on noting that passivity corresponds to 
positive-real transfer functions and using arguments similar to those in 

Suppose  now that E(0, y, to, T )  G 0 for ally and all T >  to. With zero 
input, inequality (3) shows that (p(x(t ) )  is  nonincreasing  with  time, and 
strictly decreasing  given  a suitable observability assumption. The result 
is that + ( x ( t ) )  asymptotically approaches one of its local minima, if it 
has any. The following  theorem  gives  a  precise connection between 
dissipativeness and asymptotic stability. 

Theorem 6. Suppose G(P) is (0, S, Rjdissipative for some strictly 
negative definite Q. Let X, = (x: d(x,P)< dl}, for some d,>O, be 

[61, [I. 
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uniformly reachable from 8 and ZSD with  respect to 8. Then there 
exists  some d,> 0 (with d ,  dependent on d , )  such that, with zero input, 
all state trajectories starting in X2= {x: d(x ,  a)< d2}  remain in X,, and 
asymptotically approach 8. 

ProoJ For any t > to and x ( t )  EXl, inequality (3) with u = 0 reduces 
to 

+ ( x ( t + T ) ) < + ( x ( r ) ) - p a ( d ( x ( t ) , Q ) )  ( 5 )  

where p,  as in the  proof of Theorem 1, arises from negative  definiteness 
of Q, and a and T are as introduced in the ZSD definition. Because 
+ ( x ( t +  T)) > 0, this gives  a  lower bound on +(x ( f ) ) .  Uniform reachabil- 
ity  provides an upper bound (see the comments following Theorem 3), so 
that 

p a ( d ( x ,  8 ) )  <+(x)  G 3 ( d ( x ,  8 ) )  for all  EX, 

where a and { are class 'X functions. With d2=3-'(pa(dl)), it follows 
easily that d(x(to) ,  8 ) < d ,  implies d ( x ( t ) ,  B)<d, for all r > to. 

Because +(x(t)) is nonincreasing and bounded below  by zero, it 
converges  monotonically to some  limit $ao. This means that for any E > 0 
there exists rl r to such that 

+ o ~ + ( x ( t ) ) < + o + p a ( e )  forallt>r,.  

Combining this inequality  with (2, it follows that d(x(r), 8 )  < E  for all 
r > t, .  0 

Some  comments on the  proof of Theorem 6 are appropriate. One can 
prove that +o = 0, but this fact is irrelevant to the proof. Notice also that 
if 8 is not a connected region in X ,  then X, and X ,  need not be 
connected. This can happen when the system has multiple  equilibria. An 
interesting feature of the proof is that standard Lyapunov  theory  results 
were not used. These require  smoothness constraints on the Lyapunov 
functions which cannot be easily guaranteed for storage functions +. 

For systems  which are only  weakly  dissipative, so that +(x) need not 
be zero for XEQ, the proof fails. This is because there is no class X 
upper bound on +, so that, informally, the inequality + ( x ( r ) )  4 + (x ( to ) )  
need not describe  a  region containing 0. 

The important conclusions so far are that, with Q strictly negative 
definite and suitable reachability and observability  assumptions, 1) dis- 
sipativeness  implies both finite-gain stability and local asymptotic stabil- 
ity; and 2)  weak dissipativeness  implies weak finite-gain  stability, but not 
n d y  asymptotic  stability. One can also interpret these  conclusions 
as saying that FGS implies  local asymptotic stability, but WFGS does 
not. These results  yield  a considerable generalization of one for finite 
dimensional nonlinear systems in [8]. 

It is  worth  pointing out that the proof of Theorem 6 does not rely on 
the quadratic nature of E( ., -, to,  T )  shown in (4) except for the require 
ment that ~(0, y ,  ro ,  T )  < -pIIy 11 +. fact,  most of the results of this 
paper generalize  easily to situations where E is an arbitrary nonlinear 
functional satisfymg  some  very weak assumptions. The exceptions are 
Theorems 1 and 2, which  would require the relatively strong assumption 

~ ( ~ , ~ , ~ o , ~ ) ~ f ( l l ~ ~ I l : ) - g ( l l Y + ~ ~ l l 2 T )  

for some  continuous  causal linear operators M and N, and functions f 
and g of a  fairly  restricted  form. In any case,  dissipativeness in this 
general  sense is likely to be difficult to test,  whereas  there are, at least for 
finite-dimensional  systems, computationally feasible tests for dissipative- 
ness in the sense of our Definition  2 [ 7 )  These observations  suggest that 
there is little  point in extending the results to the nonquadratic case. 

v. EXAMPLE 

Consider the system  with finitedimensional state equations 

X=f1(x)+f,(x)+2yu, x(0)=xo 

y = f , ( x ) + w  

where y is a scalar and the signal spaces are en(R+) .  The functionsf,(-) 
and f2(.) are assumed to have  sufficient smoothness to ensure unique 
solutions, and to have  the  properties 

~ 

1) fl(0) =f2(0) = 0; 
2) f:(x)f2( x) > 0 for x; 
3) fi( .) is a  gradient  map, and there  exists a constant k > 0 such that 

for all x. 
Using C, norms and inner products, it turns out that 

Y 2 1 1 ~ I I + - l l ~ l l + = < f l ~ f 2 ) T - < f 2 ~ ~ ) T  

>+(xW)-+(x0). 

ms is, of course, inequality (3).] Writing this as 

l l Y 1 1 2 T ~ ~ 2 1 1 ~ I I ~ + + ( ~ o ) ,  

it follows that the system is WFGS, and FGS if +(xo)=O. Asymptotic 
stability can also be studied by  using +(x) as a  Lyapunov function. With 
u = 0, we have 

e < x >  < -j.2=(.>/2<x>. 

Now  consider  the  following three cases, with x taken to be a scalar for 
simplicity. 

Case 1. Let fi(x)= -x41 andf2(x)= -axq2, where a>O and 41,42 
are odd integers. Then 

and +(O) = 0. 
Case 2. Letfl(x)=O  andf2(x)=  -asinx where a>O. Then 

+(x)=a(l  -cosx) 

and +(xo)=O for the infiite number of isolated points x o = + 2 n r  
where n=O, 1, 2,... . 

Case 3. Letf,(x)=x  andj2(x)=ax/l+x4 where a>O. Then 

9 ( x ) = q ~ - a r c t a n x ~ )  2 2  

and + ( x ) > O  for all finite x. 
The three cases are illustrated in Fig. 1. In Cases 1 and 2, we have 

FGS  and asymptotic stability. (For Case 2, take Q= {xo:  xo= +2nn).) 
In Case 3, we  have only WFGS; and the system  has  a  unique  equilibrium 
at  xo=O, which is completely unstable in the sense of Lyapunov. In all 
three cases, the  reachability and ZSD assumptions of Theorem 6 are 
satisfied. This illustrates that a  system  which is only  weakly FGS can be 
completely  internally  unstable. 

VI. EXPONENTIAL STAB- 

W e  now know that finite-gain stability implies local asymptotic stabil- 
ity. For hear finite-dimensional systems, this connection is actually an 
equivalence [l]. However, for nonlinear systems, it is known that even 
globally  asymptotically stable systems need not possess input-output 
stability properties [13], [14]. It turns out that for a  large  class of systems, 
global  exponential asymptotic stability (GEAS) does  imply  finite-gain. 

Consider the finite-dimensional state-space representation 

where the functions f(.), g(. ) ,  and h ( - )  are assumed to have sufficient 
smoothness to ensure  unique  solutions for & signal spaces. In particular, 
suppose that f(O)=O, g(O)=O, h(O)= 0, and f(-) is a C' function with 
bounded gradient in the sense that IVf(x)l< L Vx, where L is a constant 
and 1. I denotes  the  Euclidean  norm. 

Theorem 7. If the  origin is GEAS for the autonomous system X = f ( x )  
and functions g(*) and h ( . )  have  finite-gain (with respect to Euclidean 
norm), then  system (6) is FGS. 
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C a s e  2 : 

f , { x )  0 ,  f , ( x )  - Q s i n  x 

t ’  

I 
Case 3 :  
f , ( X l  = x , f, ( x )  = - Q X  

I + X ‘  

Fig. 1. Storage  functions for example. 

ProoJ It is a known result [15] that GEAS for .;=!(x), withf(.) 
possessing the above mentioned smoothness  properties,  implies the ex- 
istence of a Lyapunov function V: X+R, satisfying 

e6 --CIIxIz (7a) 

Here V refers to the derivative along system  trajectories. 
For x(0) = 0 and some T> 0, consider 

> 0 for x(0) =O. 

Hence 

By the Schwarz  inequality, this gives 

llxll& I1du)llr. 

Then finitegain of h ( - )  and g(-)  gives the result. 
A special case of t h i s  theorem has been useful in stability theory for 

interconnected systems [9]. Input-output and Lyapunov stability results 
feature similar stability conditions with respect to structure, but differ 

insofar as the isolated  subsystems are typically taken to be FGS and 
GEAS, respectively. In [SI, it is pointed out that a connection similar to 
that of Theorem  7  offers  a considerable degree of unification to these 
previous  results. 

w. CONCLUSIONS 

The contriiution of this paper is to provide  some further clarification 
of the relationship  between input-output stability and Lyapunov stability 
properties. AU versions of input-output stability do not necessarily  imply 
internal stability, even for reasonable minimality  assumptions. Theorem 
6 states conditions under which finitegain implies  local asymptotic 
stability. This complements  a  result  by  Willems [2], which  deals  only 
with  global  properties. The class of systems for which  this connection is 
made is thus extended to include systems  with  multiple  equilibria. 
Theorem  7  considers the reverse connection and gives a  class of systems 
for which  global exponential asymptotic stability implies finitegain 
Stability. 

In the process of developing  the stability results, improvements have 
been made to the  theory of dissipative  systems.  Theorems  1 and 2 
sharpen an important lemma in the stability theory of interconnected 
dissipative  systems [9]. Theorems 4 and 5 represent  a  direct  generaliza- 
tion of the Kalman-Yakubovich-Popov  lemma.  A  previous  version of 
Theorem 5 for signal  spaces provided new  Lyapunov stabiliw results 
for interconnected nonlinear systems [9]. This result appears to be 
fundamental in nonlinear systems  theory.  We  have noted that the 
dissipative  systems  results do not require the function E( . ,  ., to, T) to be 
quadratic. Very recently,  Safonov and Athans [ l q  have  considered  what 
are essentially nonquadratic dissipation  inequalities. It is interesting that 
they use some  Lyapunov stability theory arguments in deriving input- 
output stability, but the development does not facilitate understanding 
of what internal stability properties are inherited by an input-output 
stable system. 

Consideration of connections between input-output and Lyapunov 
stability properties  raises  some  challenging  problems. Solution to these 
are important for progress in applications.  Difficulties  arise in systems 
with  multiple  equilibria-for  example,  power  systems. This area is 
attracting attention for applications of system  theory and interest has 
been  shown in the application of input-output methods. It has been 
claimed  [17] that this is not possible  without substantial modification to 
the presently known theory. The claim is based on the idea that input- 
output stability generally  implies global asymptotic stability. The results 
of t h i s  paper suggest that if input-output methods are not fruitful in 
power  systems, it will not be for that reason. 
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Local Stability of Composite 
Systems-Frequency-Domain  Condition and 

Estimate of the Domain of Attraction 

MASAMI S A E K I ,  MITUHIKO A R A K I ,  AM) BUNJI KONDO 

Abstroct--'Ibfs paper is concerned wia such composite systems whose 
subsystems roniain one nonlinearity each and wfme i o t e n o ~ e c t i ~ ~ ~  are 
hmctions of the scalar outpats of snbsystems. A frequeney-domain condi- 
don which assures I d  asymptotic stability is given  under the assumplions 
that each nonlinearfty &fii a sectw condition, that  interconnections are 
uneariy booaded, and that linear parts of subsystems may have  unstable 
poles. In deriving  the above result, such Lyapunov functions  of subsystem 
are constrnded so that their weighted stun is a Lyapunov fun& of the 
overallsystem.Amethodtoestimate~domaInofattractionbasedoothe 
above Lyapunov fundions is also studied. When the bounB on nonlineari- 
tiesholdtnreintbeentiresprroeandwhentheLinearpartsdonothave 
rmstsMepoles,thepreseotconditionturnsonttobethesamewiththe 
L@abUiQ -0nditi0~ which WBF obtained before by Araki. 

I. INTRODUCTION 

The decomposition method of stability analysis is now rem+ as a 
powerful  means for the study of largescale systems. The principal idea 
underlying this method was already included in the papers of Bellman 
[I] and Matrosov [2]. Later, especially after 1970, many  researchers  have 
derived  a  variety of results  using this method [3]-[8]. This paper is also 
concerned  with the application of the decomposition method to large- 
scale systems.  Here we focus upon a specific  class of systems consisting 
of such  subsystems  which  have  been familiar to control engineers through 
the absolute stability  problem. Our intention exists not only in present- 
ing a single  stability condition for that class of systems but also in 
showing a compact  model of analysis  which  combines the classical 
results obtained in the absolute stability study with  the  recent  decom- 
position method The  way of analysis  followed in this paper  would  show 
how to reach sharp results in other cases by applying the decomposition 
method,  which is sometimes  blamed for being  "too  conservative." 
Thus, consider the composite  system (CS) which is described by the 

equations 

x,=l'$xj+bjuj, yj=cTx. J J  (1) 

u,=-+,(Y,,r)+g,(Y I,...,Ymrt) j = l , - . .  , m  (2) 

where the scalar-valued functions +,(y,, t )  and g j (y I :  . . , ym, r )  are 
assumed to satisfy 

5,Y;<+,(Yj,t)Yi"~,Y, 2 3 +,(O,t)=O (3) 
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for those  values of y, restricted by 

-pl,<yj<p;?, j = l , - . .  , m .  

In the above, u, and y, are scalars; x,, b,, and c, are n,-vectors; F j  is an 
n,xnj  matrix; q,, p y  and hi are positive constants; ISjk is a nonnega- 
tive constant; and ti 1s a constant less than q,. Let x be the state vector 
of the CS given by 

(5) 

,...,x:)=. 

Then, from (3) and (4), the origin x=O is an equilibrium point of the CS. 
It is stability of this equilibrium  which will be  studied in the following. 

If (3) and (4) are satisfied for all values of y/ without restriction (5), 
and if the linear parts (1) do not have unstable poles, we can use the 
simple  frequency-domain condition of [9] to assure L2-stability of this 
system. Then we can automatically assure the existence of a  Lyapunov 
function and the  global  stability of the system by applying the general 
results about &-stability and existence of Lyapunov functions [22]-[25]. 
The purpose of this paper is to treat the case in which  &-stability is not 
obtained [i.e., the  case  where (3) and (4) hold true only  locally as 
assumed] and to show a  concrete  way of calculating the Lyapunov 
function and the estimate of the domain of attraction. The  special case 
in which q,= co was already treated in [8], where the major  interest  lay 
in showing  the  parallelism  between the Lyapunov stability analysis and 
the input-output stability  analysis. Here, we treat the general case and 
also study the  domain of attraction. 

11. RESULTS 

Concerning  the asymptotic stability of the CS, we have the following 

Theorem I (Srability Corrdtion): Assume that the linear part (1) of 
three theorems. 

each  subsystem is completely controllable and observable, and let 

Then, the origin x=O of the CS is  asymptotically stable if there exists  a 
positive  number a, for eachj such that 

is positive real, and if the m X m matrix A - B is an M-matrix where 

A=diag(a,). B = ( & )  j , k = l , . - . , m .  ( 8 )  

Theorem 2 (Construction of Lyapunm Function): Assume the require- 
ments of Theorem 1 are satisfied, and let 6 be a sufficiently small 
positive  number  such that A - B - 6 1  remains an M-matrix. Then,  there 
exist e, > 0, a positivedefinite n, X n, matrix 5 and an nivector q, which 
satisfy 

eere-eets  a_ diagonal matrix D=diag(d,) with d,>O which makes 
MDM - rTDr positive  semidefinite,  where 

and the function a(x) defined by 
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