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Tests for Stability and Instability of Interconnected 
Systems 

PETER J. MOYLAN, MEMBER, IEEE, AND 
DAVID J. HILL MEMBER, IEEE 

Absrmet-Thb paper describes simple sufficient conditions for stability 
and instability of intercoan&ed system in tenns of the properties of the 
subsystem and of the intercom&ns. l%e central theme is ihe notion of 
‘‘dissipatnenessn of the subsystems-a properly which includes finite gain, 
passivity, conicity, and some other variants as special cases. 

I. INTRODU~I~ON 

This paper is concerned  with the input-output stability of intercon- 
nected  systems. For brevity, we will not attempt to  survey  the  extensive 
and growing literature in this field,  but it is possible to make one 
important observation:  invariably, input-output stability  tests for inter- 
connected  systems start from  the postulate that the  behavior of the 
subsystems is imperfectly known. This may  well reflect  physical  reality; 
more  importantly,  though, it reflects  a  recognition that if one used 
detailed  equations to describe the subsystems,  the  resulting  system 
description  would be so complex that any stability tests so derived  would 
be  massive and unwieldy. To avoid an information explosion, the usual 
approach is to use only one or two parameters for each  subsystem, 
specifying bounds on subsystem responses. The resulting stability criteria 
give  merely  sufficient conditions for stability (rather than neceSSary and 
sufficient  conditions), but this is the inevitable  result of trying to make 
the tests  simple. 

For example,  many of the  known tests are “small gain“ criteria.  Each 
subsystem is described  by  only one parameter, which is a bound on its 
input-output gain. Some other tests are based on assuming  passivity, or 
conicity, of the  subsystems. Again, these  assumptions  correspond to the 
extraction of one or two parameters to describe  each  subsystem. 

This suggests an underlying  theme to all the known input-output 
approaches. Our contention is that a  unifying factor is the property of 
“dissipativeness.” This property, to be defined  below, includes finite 
gain, conicity, and passivity as special  cases.  Consequently, one can state 
a  general  stability criterion [ 11 which includes many of the past published 
criteria as special cases. 

The exposition  proceeds as follows: after giving  some basic defii- 
tions, it will be shown that there is a  simple  stability  test for dissipative 
systems. A related  instability  theorem will also be given. It will then be 
shown  that,  for  a  composite  system  which is a  linear interconnection of 
subsystems,  dissipativeness of the  subsystems  implies  dissipativeness of 
the overall system. This allows stability and instabihty criteria to be 
given for interconnected  systems. The stability result is closely  related to 
that in [I]; the treatment of instability  is new. 

There are also points of contact between the present work and that of 
Willems; see, for  example, [2], 131. Willems,  who  originated the dis- 
sipativeness concept, was  very largely  concerned with the relationship 
between  dissipativeness and Lyapunov  stability.  The  present approach, 
which  follows  more  in the spirit of [l], [4], is concerned mainly with 
input-output Stability. 

11. DWINITIONS 

Let S, S,, and be three given  spaces,  where S cS, is a  real inner 
product space  (although in general 5, is not an inner product space). 
Also let PC) be a  family of projections,  such that for every T E S ,  P, 
maps S, into 5 .  That is, for all uES, and all T E 5 ,  we have P , u € s .  

Informally, 5 is the “time line,” and P, can be thought of as an 
operator which truncates a  signal at time T. (However, we do not wish to 
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formally  restrict 5 to being the real line,  since this would  preclude 
application of the  theory to areas like  multidimensional  filters.) 5, is our 
signal space, and 5 is the space of “bounded signals.” Obviously, a 
study of instability  requires us to allow the possibility of unbounded 
signals, that is, signals  which  lie in 5, but not in 5. 

For any integer n, let 5” denote the space of n-tuples  over 5 (and 
similarlyforS~).Foru=(u,,u2,-..,un)~S“ando=(u,,u2,...,o~)~SR, 
define 

n 

( u , u ) =  c ( U i . D i )  
i =  I 

and 

P,U=(P,UI,PTU~:..,P,I(,). 

Also let ( U , U ) r  denote (PTU,P ,D) .  It is assumed that PT has the 
properties ( P , U , ~ ) = ( t l , P ~ D ) = ( P T u , P = ~ )  for all u, uES:,  and l lYl lT 

<llull for all ~ € 5 “  and all T E 5 ,  where ( ( u ( ( ~  and ( (u( (  denote the 
square roots of ( U , t l ) ,  and (u ,u) ,  respectively. 

A system G, with m inputs and p outputs, may be described as a 
subset of 5: X S{; that is, as a  collection of possible input-output pairs 
(u ,y )  where uES7 a n d y E q .  

In  discussing  stability, it is  useful to refer to the  set 

CJC(G)=(u€S”:yESPand(u,y)EG) .  

Definition: G is stable iff X(G)=Sm.  
Definition: G is causal iff PTyl = P T y ,  for all (u,,y,) E G ,  ( q , y J E  G 

such that Prul = P+2, and all T E 5. 
For the next two definitions,  let  Q: 848, S: and R: 

Sr+S: be memoryless bounded hear operators, with Q and R  self- 
adjoint (and with the term  “memoryless”  defined  in  terms of causality in 
the usual way). 

Definition: G is (Q, S, R )-dissipative iff 

<Y,Q>r+2(Y,Su),+<u,Ru),>O (1) 

for all T E S  and all (u ,y )EG.  
Definition: G is (Q,S,R)-cyclodissipative iff 

( y , Q ) + 2 ( y , S u ) + ( u , R u ) > O  (2) 

for all (uy) E G such that u E %(G).  
With  various  choices of Q. S, and R, it should  be  clear that dissipati- 

veness  embraces  concepts such as passivity and conicity [SI. In particular 
let Q = - k21 (where k is a scalar and Z denotes the identity operator), 
S=O, and R =  I. Then the definition of dissipativeness  reduces to llyll 
<k(lullp In this case we  say that G has finite gain, with an upper gain 
bound of k .  

In the following  two sections, we shall  require that there  exists c 0 
such that ( y , Q ) <   - ~ l l y ( ( ~  for a l l y € V .  If c=O, then the operator Q 
is nonpositive  definite. If c is strictly positive,  then  Q  is  negative  definite 
and has a  bounded  inverse. For brevity, we shall use the  term  “strictly 
negative  definite” to describe an operator Q which  satisfies the above 
inequality for some E > 0. 

Notice,  incidentally, that if Q is negative  definite,  then definitions (1) 
and (2) require  the  system to be unbiased  (in  the  sense that zero input 
implies  zero  output).  One way  of allowing for output bias is to replace 
the zero on the right  side of  (1) and (2) by an arbitrary constant, and to 
define finite gain via the inequality ( ( y ( ( , gk , ( (u ( l ,+k , .  To keep the 
notation simple, we shall ignore this possibility in the  following sections. 

111. STABIIJ~ AND INSTABILITY 

The exact  relationship  between stability and finite gain  is not entirely 
trivial; but to  avoid  digressions we shall not explore this question. It 
suffices here to state that finite gain is generally  considered to be a 
strong form of stability. The “stabilitf‘ results of this paper are actually 
“finite gain” results. Note, incidentally, that Theorem 1 is closely  related 
to results in [ ll, 161. 

Theorem I :  If a  system G is (Q,S,R)-dissipative for some  strictly 
negative definite Q, then  it has finite gain. 
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Proof: If Q is strictly  negative definite, then it is  a  relatively  simple 
matter to manipulate the inequality  (1) into the form ( y , ~ ) ~  <k2 
(u,u),, for a  scalar k depending on the norms of  Q, S, and R. 

Theorem 2: If G is causal and (Q,S,R)-cyclodissipative for some 
nonpositive  definite Q, but is not (Q,S,R)-dissipative, then it is not 
stable. 

Proof: Suppose that G is  causal,  cyclodissipative, and stable. Then 
for any u E 57 and any T E 5, stability implies that PTu E %(G). Let p 
be an output corresponding to PTu; that is, we have (u,y)E G and 
(PTu,fl E G. Then (2) becomes 

(Y,@-) +2(Y,SSP,u)  +(PTu,RPTu) 0. 

Now  causality  implies PTy= PTy, so we have 

( Y , ~ - ~ ) + ~ ( Y , S ~ ) T + ( U , R ~ ) T . ~ .  

With  Q  nonpositive  definite, this inequality implies  inequality  (1). That 
is, our original  assumptions  imply that G is  dissipative.  Conversely, if G 
is not dissipative,  then  it cannot be stable. 

Notice that the above two  results are not completely  complementary, 
in that the stability  result refers to finite-gain stability, but the instability 
result  does not. Also, causality appears to be essential in Theorem 2, but 
is not needed in Theorem 1. The issues raised by these  discrepancies 
have not yet  been  fully  resolved. 

IV. I m c o N N E m  SYSTEMS 

Suppose  now we have N subsystems,  such that for all i the ith 
subsystem Gi is  dissipative or cyclodissipative  with  respect to some 
(Q,,Si,RJ. Let  the  subsystems be interconnected via 

N 
ui= U, - Hiyj, i =  1; , N  

j =  1 

where % and yi are the input and output of Gi, the u, are external  inputs, 
and the Hij are memoryless bounded linear operators. In an obvious 
notation, the above constraints may be written  more  compactly as 

u=u,-HY. 

The input and output of the overall  system are taken to be u, and y. 

diag(R,,R2;-.,RN). Define the operator 
Let Q=diag(Q,,Q,.-.,Q,},  S=diag(S,,S2,...,S,)  and  R= 

~=Q+H*RH-SH-H*S* (3) 

(where the denotes adjoint). 
Theorem 3: If all subsystems are dissipative and 6 is negative  defi- 

nite, then the overall  system has finite gain. 
PmoJ We have N inequalities of  the-f??  (1). By adding these: it 

may be shown that the overall systemjs (Q,S,R)-dissipative, where Q is 
given  by (3) and the forms of S and R are of no interest. (The details of 
this derivation are identical to those for the  closely  related  result  in  [ID. 
The result  then  follows from Theorem 1. 

Theorem 4: If all  subsystems are cyclodissipative and unbiased in the 
sense that (O,yi) E Gi implies yi =0, if Q  is  nonpositive definite, if the 
overall  system is causal, and if at least one subsystem is not dissipative, 
then  the  overall  system  is not stable. 

PyoJ As in  Theorem 3, it m,ay be shown +at the over@  system  is 
(G,i,R)-cyclodissipative, where S=S-H*R,  R= R, and Q is given  by 
(3). Now  suppose  that, for some k, subsystem Gk is (Qk,sk,Rk)-CyCb 
dissipative but not (Qk,$,Rk)-diSSipatiVe. Then there  exists  a (iik,jjk)E 
Gk and some T E 5 such that 

( Y k , Q ~ k ) T + 2 < Y k , s , 2 T , ) T + ( ~ k , R k ~ k ) T < o .  

Now the above definitions of 6, i, and R  ̂ are such that 

( n ~ v > T + 2 ( r , i U e > T + ( u ~ , R ^ u e ) T  

N 

(Recall that ui and yi are the input and output of subsystem Gi.) Choose 
an external input u, such that 

u, = HQ-~ for i # k 

uek = iik i- H&-k. 

With this external input there corresponds a  solution u of ( I+HG)u=  ue 
such that ui =O for i#k ,  and uk = iik. The corresponding subsystem 
outputs are yi=O for i#k, and yk =A. The above sum is therefore 
negative for at least  opeA (zt,,y) pair, which  suffices to show that the 
overall  system is not (Q,S,R)-dissipative. Instability follows from Theo- 
rem 2. 

V. DISCUSSION 

In most  applications, the various linear operators introduced here are 
matrices, so the stability  tests are simply  a matter of checking  a  matrix Q 
for negative  definiteness.  Checking the subsystems for dissipativeness or 
cyclodissipativeness  may still be difficult,  except for linear single-input 
single-output  systems  where the circle criterion [5]  may be used. Criteria 
for dissipativeness are also known [4] for some  classes of nonlinear 
systems. 

It turns out [l] that Theorem 3 (or, more  precisely, the special  case of 
Theorem 3 which appears in [l]) includes as special cases many of the 
previously  published stability criteria. It appears likely that Theorem 3, 
or something  close to it, represents the limit in simplicity and generality 
of what one can get using the present approach. (Although,  obviously, 
more  precise  stability criteria can almost certainly be obtained if one is 
prepared to sacrifice  simplicity).  The situation with  respect to instability 
is less  satisfactory, and we believe that Theorem 4 can probably be 
improved  upon. For example, the interrelationships between causality 
and stability are st i l l  not fully understood, This and similar  issues remain 
the subject of current research. 
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New Passivity-Type Criteria  for  Large-Scale 
Interconnected Systems 

M. VIDYASAGAR 

Ahtnrct-h this paper, we present several new passivity-type criteria 
for the &-stability and &-instabiity of h g e e a k  interconnected sys- 
tem~. ’ Ikse results contain the standard “single-loop” passivity resnlts as 
speeial eases, and are in some ways simpler to apply than the large-scale 
results found elsewhere. 

I. INTRODUCTION 

In the study of “single-loop” feedback systems, there are basically two 
types of stability theorems,  namely,  small-gain  theorems and passivity 
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