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Stability  Criteria for Large-Scale Systems 

Abstmct-Rerent  research  into largescale system stabfity has pro- 
ceeded via two apparently unrelated approaches.  For  Lyapunov stability, it 
is assumed  that the system can be broken  down into  a number of 
subsystems,  and  that  for each subsystem one can find  a  Lyapmov function 
(or something akin to a Lyapunov fimction). The alternative  approach is an 
input-output  approach; stability criteria  are  derived  by assoming that ea& 
subsystem has f~te gain. 7he input-output method has also been applied 
to interconnections of passive and of conic subsystem. 
This paper  attempts to unify many of the previous  results, by studying 

linear interconnections of so-called “dissipative’’  subsystems, A single 
matrix condition is given  which ensures both input-output stability and 
Lyapunov stability. The result is then specialized to cover i n t e r c o d o m  
of some  special types of dissipative systems, namely finite gain systew 
passive  systems,  and conic systems. 

I.  INTRODUCTION 

NE OF THE main thrusts in systems research over 
O r e c e n t  years has been the development of theories for 
large-scale  systems. A significant proportion of this  work 
has dealt with the problem of stability. The purpose of 
this paper is to present a new stability criterion for large- 
scale  systems,  via an approach which at the same time 
appears to unify many of the previously known stability 
results. 

There is an accepted basic approach for deriving stabil- 
ity criteria: stability constraints are imposed on the sub- 
systems, and then the stability properties of the composite 
system are deduced according to the properties of the 
interconnection topology. The first work along these lines 
is due to Bailey [l].  In this and subsequent work  by 
others, it is assumed that a Lyapunov function, satisfying 
certain extra properties, exists for each subsystem. Stabil- 
ity of the interconnected system  is studied by combining 
these functions in a vector and using the theory of vector 
Lyapunov functions-see the surveys by Matrosov [27] 
and Siljak  [2] on this  work. An alternative approach, used 
by Arab and  Kondo [3], and Michel and Porter [4], has 
been to construct a scalar Lyapunov function for the 
composite system as a weighted sum of the subsystem 
Lyapunov functions. More recently, attention has been 
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given to  input-output stability (where each subsystem is 
described by a mathematical relation or operator on func- 
tion spaces and the methods of functional analysis are 
employed). Porter and Michel  [5], and Cook [6] have 
considered the cases  where the subsystems have finite gain 
or are conic. Their results are a natural generalization of 
the results for single-loop feedback systems obtained by 
Zames [7]. Recent extensions to the above mentioned 
work are numerous. To mention just some of this work, 
we note [8]{10] on Lyapunov stability and [ 111, [ 121,  [28], 
[29]  where input-output stability is considered. 

Although developed independently, the stability criteria 
arising from both methods do bear some immediate re- 
semblance. (’TIUS is largely a superficial observation and 
refers to the similarity of matrix conditions restricting the 
interconnection structure. Some more concrete discussion 
along these  lines  is  given  by Cook [6].) In view  of the 
strong parallelism between Lyapunov and  input-output 
stability results for single-loop feedback systems, we might 
expect a corresponding relationship for general intercon- 
nected systems.  Willems [ 131 has given an elegant discus- 
sion in the single-loop case within the framework of 
dissipative  systems theory [ 141,  [15]. Consequently, this 
would appear to be a good starting point for consideration 
of the more general situation. 

In the present paper, we propose to treat  input-output 
and Lyapdnov stabilip side-by-side for general large-scale 
systems. The paper has some points of contact with 
Willems’  work  [14],  [26] but whereas  he  was concerned 
with providing a general outline of how to derive stability 
criteria, we have concentrated on more specific aspects. 
The work can be considered as  an outgrowth of previous 
work by the authors on the theory of dissipativeness and 
its applications to stability theory [ 15]-[17]. Each subsys- 
tem  is assumed to have the general input-output property 
of dissipativeness and a very general input-output stabil- 
ity  result is given. It is then shown that, under some 
further restrictions, a state space representation of the 
system  will be asymptotically stable in the sense of 
Lyapunov. 

Section I1 of the paper contains a brief treatment of 
dissipative  systems as background material, and Section 
I11 contains the main stability results. In later sections, the 
results of Section I11 are specialized to cover  some special 
classes of dissipative  systems-namely  passive, finite gain 
and conic systems-which have been studied extensively 
in the past literature. To allow a concise presentation we 
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confine attention  to those large-scale  systems  which can 
be viewed as a linear interconnection of wear or nonlin- 
ear, and not necessarily finite-dimensional) subsystems, 
and for Lyapunov stability only time-invariant systems 
are considered. Apart from these limitations, the results of 
Sections IV-VI include as special cases all of the above 
cited  results on inputdutput stability and much of the 
work on Lyapunov stability. 

11. DISSIPATIVE SYSTEMS 

A. An Input-Output Approach 

Let % be an inner product space whose elements are 
functions u : 34%. Also let Qn be the space of n-tuples 
(column vectors) over %, with inner product 

n 

( u , v ) =  2 (ui,vi). 
i =  1 

Then for any u E q n  and any T E’%, a truncation u, can 
be defined via 

It is also useful to speak of a “truncated inner product” 
( u , v ) ,  = ( u , , ~ , ) .  Finally, let us define an extended space 
( ? L : = { U ~ U , € % ~  for all T E a } .  

A system with m inputs and p outputs may  now be 
formally defined as a relation on %: X %:, that is a set of 
pairs ( u  E %:,y E %:), where u is an input and y the 
corresponding output. At this stage it is not necessary to 
assume that for each input there is a unique output; nor is 
it  necessary to assume time-invariance, causality, and  the 
llke.  (However such restrictions will have to be imposed 
when we come to consider state-space models). 

Now let Q € 9 1 P X P ,  S E W x “ ,  and R be con- 
stant matrices, with Q and R symmetric. Then we say that 
the above system  is (Q ,  S,  R)-dissipative if 

(y,Q),+2(y,Su),+(u,Ru),>O (1) 

for all T E a, and all u and y such that (u,y)  is a valid 
input-output pair. Related concepts-losslessness, strict 
dissipativeness,  cyclo-dissipativeness [ 14H16]--can be de- 
fined in a similar manner; however  these variants will not 
be needed in the present paper. 

An important special case arises if  we choose Q= - I 
(where I is the unit matrix of appropriate dimension), 
S=O and R = k21, for some fixed  positive  real number k .  
In this  case the above definition (1) reduces to 

where 11. I / T  is the truncated norm, defined via 11x11%= 
(x,x) , .  In this case we say that  the system  is finite gain 
input-output stable (or, for brevity, simply stable) with an 
upper gain bound of k. This is a commonly used defini- 
tion of input-output stability-see for example [18]. 

3. A State-Space Approach 

In order to study Lyapunov stability we need to in- 
troduce the concept of state. For our present purpose, an 
appropriate state-space model is described in the follow- 
ing assumption. 

Assumption I :  There exists a metric space X (the state 
space), a transition map + : $4, X % X X X %:+X, and a 
readout map r : X X %”-+%!’ such that 

i) The limit x(t)=lim,o+-,+(to,t,O,u) is in X for all 
t E 9, and all u E %: (we then call x ( t )  the state at time 
t )  ; 

ii) (Causality) +(to,t , ,x,ul)=+(to,t , ,x,u3 for all t ,  2 tm 
all X E X ,  and all u , , u , ~ % :  such that ul( t )=u2( t )  in the 
interval to Q t Q t ,; 

iii) (Initial state consistency) +(tm tO,xmu)=  x .  for all 
t o€$ . ,  uE%T and x o E X ;  

iv)  (Semigroup property) +(fl, f2, +(to, t l ,  xm u), u) = 
+(rm t2,x0, u) for all x , €   X ,  u E %: whenever to Q t ,  < t,; 

v)  (Consistency  with input-output relation) The in- 
put-output pairs (u,y) are precisely those described via 

vi) (Unbiasedness) #(to, t ,O,O) = O  whenever t > to, and 

vii) (Time-invariance) + ( t l  + T ,  t ,  + T,  xo,  u , )  = 
+(t1, t2 ,x0,u3 for all T E 9 ,  all t2> t , ,  and all uI,u2E%T 
such that u2(t)= u,(t + T ) ;  

viii) (Reachability) For every x E X there exists to<O 
and u E %,: such that +(to,  0, 0, u )  = x .  

Assumption 1 viii)  is to some extent inessential, in that 
this assumption can be used to define X ,  Assumptions 1 
vi) and vii), and even the assumption that X is a metric 
space, can also be weakened, at the cost of complicating 
some of the issues  raised later in  this paper. The remain- 
ing parts of Assumption 1 appear to be essential for 
setting up a state-space model. 

In defining dissipativeness for such a model, we confine 
attention to the choice % = &(- co, co), the space of 
functions u : %.+9. whch are square integrable. Inequal- 
ity (1) then becomes 

r(0,O) = 0; 

l o f ’ w ( t ) d t > O  

for all finite t ,  > to and all u E e [ t o , t l ] ,  whenever the 
initial state x(to)=O. Here, the suppry rate w(t) is  given by 

w ( t ) = y ‘ ( t ) Q ( t ) + 2 y ’ ( t ) S u ( t ) + u ’ ( t ) R u ( t ) .  (2) 

We shall  use the terms “(Q, S,R)-dissipative” and “dis- 
sipative with  respect to supply rate (2)” interchangeably. 

A crucial property of dissipative  systems in state-space 
form is the following. 

Lemma I :  If a system satisfying Assumption 1 is  dis- 
sipative with  respect to supply rate w(t) ,  then there exists 
a function I$ : X--+% such that @(O)=O,@(x) > 0 for all 
X E X ,  and 
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for any x(t,) E X, any u E %:, and all to, t ,  E % such  that 
t ,  > to. Proofs of Lemma 1 may be  found in [13],  [15]. 

In the sequel, we shall impose a  further condition. 
Assumption 2: There exists some T > 0 and a continu- 

ous function a: %+a, with a(O)=O and a(u)>O for all 
(T > 0, such that with  identically zero input and  any initial 
state x(to) = x,EX, the output satisfies 

y o +  T V ( t ) w ) d t  > 4 I X O l )  
*O 

where I - I is the metric on X .  
Assumption 2 requires that with zero input, the output 

resulting from  a  nonzero initial state be distinguishable 
from that resulting from  a zero initial state. That is, it is a 
mild  observability assumption. 

111. GENERAL STABILITY  CRITERIA 

The stability criteria of this section refer to a linear 
interconnection of N subsystems, each  of which  is  dissipa- 
tive (although not necessarily  with  respect to the same 
(Q, S,  R)). The interconnection is described by 

N 
uj=uej-  2 H-y., i = l , - - . , n  

j= 1 
r l J  

where uj is the input to subsystem i ,  y j  is  its output, uej is 
an external input, and the H,. are constant matrices. 
Writingy =col(yI,. - - ,yN), and similarly for u and ue, the 
interconnection constraint may be written  more  com- 
pactly as 

u = u , - H ~  (3) 

where H is a matrix whose  block entries are the H,., with 
the  obvious arrangement of blocks. 

Let  subsystem i be (ej ,  Si, R,)-dissipative, and define 
Q=diag{Q,;--,QN},  S=diag{S,;..,S,}  and R =  
diag{ R,,. e ,  RN}. Notice that S need not be a square 
matrix, although Q and R  are  both square and indeed 
symmetric.  Now define 

~=sH+H~s’-H’RH-Q. (4) 

The matrix @ is a p x p  symmetric matrix, where p = 
] p i  and pi is the number of outputs of subsystem i .  

Theorem I :  With the interconnection (3), the overall 
system  with input u, and output y is finite gain in- 
put-output stable if 0 is  positive  definite. 

Proof: For each  subsystem, we have 

( ~ ~ , Q ~ ; ) T + ~ ( Y ~ , S ~ ~ ; ) T + ( U ; ~ R ~ U ; ) T > O  

and by summing  over  all i we obtain 

( u , ~ ) T + ~ ( Y , S U ) T + ( U , R ~ ) T > ~ .  

That is, the overall  system, with u considered as the i q u t ,  
is (Q,  S,R)-dissipative. From (3) and (4), this may be 
written as 

where i= fi-l/z(S- H’R). Let a>O be  a finite scalar 
such that R + S’S < a21. (Obviously, such an a always 
exists). Then with a little manipulation it follows that 

and then 

where 

Stability may sometimes be conclud5d under weaker 
conditions, by arguing as follows. If Q is nonnegative 
definite but possibly  singular, a variant of the above proof 
can be  used to show that ( Y , & ) ~ Q  k , ~ ~ u e ~ ~ ~ ,  for some 
k,  > 0. This tells  us something  about the boundedness of 
some (but not all)  subsystem outputs; from (3) it might 
then follow (depending on the structure of H )  that 
bounded u, leads to  bounded u. Bounded u, will then lead 
to bounded y provided that  “enough” of the subsyste? 
have bounded gain.  However  the  precise conditions on Q 
and H required to validate this argument  are rather com- 
plicated and we shall not pursue this point further. 

To obtain a state-space variant of Theorem 1, one 
further assumption is needed. 

Assumption 3: The system formed  from the  subsystems 
via constraint (3) is a dynaecal system  satisfying 
Assumption 1,  with state-space X equal to the Cartesian 
product of the state spaces of the individual subsystems. 

This assumption was not needed  for Theorem 1, essen- 
tially because our input-output model  is general enough 
to encompass situations where, for example, inputs pro- 
duce  nonunique outputs. This and similar  degeneracies 
are difficult to allow for in the state-space approach. 

L$  us  now  define a Lyapunm function as a function 
V : X+%, such that 

i) V(O)=O; 
ii) there  exists a continuous a: %+%, with a(u)>O 

for all u and a(u)=O iff u=O, such that V ( x )  > (~(1x1) for 
all x E i; 

iii) with zero external input and  any initial state x(to) E x, the subsequent  state trajectory satisfies V[x(t)]< 
V[x ( t , ) ]  for  all t > I,, and V [ x ( t , ) ]  < V[x( t , ) ]  for some 
finite t ,  > to unless  x(t,) =O. 
Under mild additional conditions, the existence 0: a 
Lyapunov function implies that the origin x =O of X is 
asymptotically stable (or  even  globally  asymptotically sta- 
ble, if condition ii) above is strengthened to require 
lim,,,cu(u) = 00). For example, asymptotic stability 
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follows if it can be shown that for each x( to)  the subse- 
quent trajectory is either unbounded or lies in a compact 
subset of 2 [19], as is the case for finite-dimensional 
systems and certain classes of infinite dimpsional systems 
[19]. Alternatively, an assumption that X is a separable 
reflexive Banach space leads to weak asymptotic stability 

Theorem 2: Let each subsystem satisfy Assumptions 1 
and 2, and let the interconnection (3) be such that 
Assumption 3 is satisfied. Then if 0 is  positive definite, 
there exists a Lyapunov function for the overall  system. 

Proof: For each subsystem, we have by Lemma 1 

+ i [ x i ( t o ) ~  + ~ r l ~ ~ i ( t ) ~ ~ > + i [ x i ( r l ) ~ ,  i =  1; - .  , N .  

Now  let V ( X ) = X ~ = , + ~ ( X ~ ) .  By summing the above in- 
equalities, we obtain 

1201. 

10 

V [ x ( t , ) ] - p & i t >   V [ x ( t , ) ]  
f a  

after setting ue,O. From Assumption 2 and the positive 
definiteness of Q, V ( - )  is  clearly a Lyapunov function for 
the overall  system. V V V  

In view of the similarity between Theorems 1 and 2, the 
phrase “the system  is stable” will henceforth be  used to 
mean that the interconnected system  is both finite gain 
input-output stable and asymptotically stable in the sense 
of Lyapunov. It should be recognized,  however, that to 
deduce Lyapunov stability actually requires more assump- 
tions than for input-output stability. 

In the next three section?,  we consider several  im- 
portant cases whch lead to Q being positive definite. 

IV. PASSIVE SYSTEMS 

A passive  system  is one satisfying (u,y),  > 0; that is,  it 
is (0, I,O)-dissipative. It is also possible to define several 
forms of strong passivity. 

Dejnition: A ( Q ,  S ,  R)-dissipative system  is said to be 
a) Passive if Q = 0, S = I ,  R = 0; 
b)  U-strongly  passive (USP) if Q =0, S =  I ,  and R = 

- E I  for some E > 0; 
c)  Y-strongly  passive (YSP) if Q = - d for some E >o, 

S =  I and  R=O; 
d) Very strongly passive  (VSP) if Q = - e l l ,  S =  I and 

R= - E ~ I  for some E , > O , E ~ > O .  
A USP system  is conventionally called strictly passive 
[18]. If, in addition, a USP  system has finite gain, then it 
is readily shown to be VSP. 

Our first result extends a result  by Sundareshan and 
Vidyasagar [ 111. 

Theorem 3: Suppose H + H‘ > 0, and let all subsystems 
be  passive. Let the subsystems be ordered such that  the 
first n, are VSP, the next n, are YSP,  the next n3 are USP, 
and the remaining n4= N -  (n ,  + n2 + n3) are passive. Let 
H be partitioned in the obvious way as 

~~ ~ ~ 

H13 H14 

H = [ i ! i  2; 2; 
H41 H42 H43 H44 

Then a sufficient condition for stability is that the col- 
umns of 

be  linearly independent. 
Proof: We have Q=diag{ -Al ,  -A2,0,0}, S = I ,  and 

R =diag { - A3,0, -A4, 0} where the Ai are positive defi- 
nite diagonal matrices. A short calculation then shows 
that 0 is  positive definite whenever 

is nonsingular. v v v  
After setting n2= n3=0,  Theorem 3 becomes a generali- 

zation of the main result in [ 111. 
The rank condition on H above requires in effect that 

the outputs of the USP and passive subsystems be 
“sufficiently  well coupled” to the inputs of the VSP and 
USP subsystems. This condition can be weakened, at the 
cost of replacing the condition H + H‘ > 0 by a positive 
definiteness condition. For simplicity, we confine atten- 
tion  to  single-input-single-output subsystems. 

Theorem 4: Let all subsystems be passive, but not nec- 
essarily strongly passive, and suppose that each subsystem 
has only one output. Then a sufficient condition for 
stability is that there exist a positive definite diagonal 
matrix P such that ( P H  + H’P) is positive definite. 

Proof: If subsystem i is (0, 1,  0)-dissipative, then 
clearly  it  is also (O,pi, 0)-dissipative for any pi  > 0. Then we 
have Q = 0, S = diag { p , , .  . . ,p,:}, R = 0 and consequently 

Testing for the existence of such a P is  discussed in the 
Appendix. The technique of weighting each (Q;, Si, Ri) by 
a scalar pi > 0 can also be used in Theorem 3, but  for  the 
sake of clarity we have omitted this generalization. The 
technique also works for multivariable subsystems, but 
leads to a stability criterion which  is  less  simple to apply 
than in the single-output case. 

Q= P H +  HIP. V V V  

V. A SMALL GAIN THEOREM 

A large proportion of the existing stabdity criteria for 
large-scale  systems, for example  those  in [2k[6], [ 121, refer 
to a situation in which  all  subsystems  have finite gain. If 
the interconnections are linear, then this situation fits 
readily into the present framework. 

Theorem 5: Let the ith subsystem have finite gain yi, 
for i = 1,. . , N ,  and suppose that each subsystem has only 
one input and one output. Define r = diag { y, ,  - - . , yN} 
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and A = r H .  Then if there exists a diagonal positive VI. CONIC SUBSYSTEMS 
definite matrix P such that 

If a single-input-single-output system  satisfies 
P - A ‘ P A > O  

the interconnected system is stable. 
Proot The ith subsystem is (- l,O,y?)-dissipative, 

and therefore (-pi, O,p,y:)-di:sipative for  any pi > 0. 
Equation (4) then leads to Q = P -   A ‘ P A ,  where P = 

Methods for checking the above condition (which  is 
essentially the same problem as that which arises in check- 
ing Theorem 4) are given in the Appendix. In particular, a 
sufficient (but  far from necessary) condition for the ex- 
i:tence of a diagonal P >O satisfying  (5)  is that the matrix 
A with elements 

diag{P,,--,P,}. vvv  

have positive leading principal minors. That is, it is an 
M-matrix [25]. This is  precisely the criterion given in [5], 
[6] for input-output stability. 

Similar criteria for Lyapunov stability have also ap- 
peared in many papers-see for example [2]44], [8]-[10]. 
Because the Lyapunov approach does not assume a finite 
gain constraint for the subsystems, but instead assumes 
the existence of Lyapunov functions (having certain spe- 
cial properties) for the subsystems, a direct comparison 
with those results is difficult. Actually, the assumptions 
made in [2H4]  are easily  shown to imply that each sub- 

(y-au,bu-y),>O 

for some scalars a and b > a (and all u), then we say it is 
interior conic, or conic inside the sector [a,b]. Similarly if 

( y -au ,bu-y ) ,<O 

then the system  is said to be exterior conic, or conic 
outside the sector [a,b]. Notice that finite gain systems are 
special  cases of interior conic systems. Moreover, for 
linear systems conicity is  very  easily checked [7]. 

Suppose now that a number of conic systems are inter- 
connected via the constraint (3). If the  ith subsystem is 
inside or outside the sector [a!,bi], then clearly it is 
(- ai, ;(aj + bi)ui, - a$,a,)-dissipat~ve, where 0; = + 1 for 
internal and - 1 for  external conicity. Let A = 
diag {a1 , .  - . , a,}, B = diag { b l ,  - * - , bN}  and Z = 
diag(o,,--.,a,}. Finally, let C = $ ( A + B )  and D = $  
- ( B - A ) .  

Theorem 6: The above interconnection of conic sub- 
systems  is stable if there exists a positive definite diagonal 
P such that 

( I +  C H ) ’ P Z ( I +   C H ) - ( D H ) ’ P Z ( D H ) > O .  

Pro05 After using  positive  weighting factors pi as in 
Theorems 4 and 5,  we have Q= - P Z ,  S =  $ (A  + B ) P Z  
and R = - ABPZ.  After a little manipulation, this leads to 

Q=(I+CH)’PZ(I+CH)-(DH)’PZ(DH). v v v  
system has finite gain; this  means, at least for the Case Of When the methods of the Appendix are used to check 
linear interconnections and time-invariant subsystems, for a suitable p ,  Theorem 6 typically  gives the Same 
that the stability criteria of [31,  [41 are implied by those in stability criteria as the method of Porter and Michel  [5]. 
[519  161 and therefore are more C O n ~ ~ ~ a t i v e  than the However,  it  is easy to generate examples for which Theo- 
present results. (The stability Criterion Of Siljak  [2] differs rem 6 gives a less conservative stability criterion than the 
somewhat from that  in [3], [4], and in general appears to technique in [51. 
give  even more conservative results).  However more re- 
cent versions of the Lyapunov approach, such as those in 
[8]-[10], rely on assumptions which are  not equivalent to a VII. EXAMPLES 
finite gain constraint, and it would appear  that the results 
of [FjHlO] neither imply nor  are implied by our meorem In this section we consider two  brief  examples, in order 
5. to show  how the methods of the Appendix are applied in 

Incidentally, it is interesting to note  that many, perhaps practice. 
most, of the existing stability criteria-for  example, those Example I :  Suppose we have two finite gain subsys- 
in [2]-[6], [ lOl-require an M-matrix test. As indicated tems, each of gain < i, and  an interconnection matrix 
above,  use of our Theorem A2 also leads to an M-matrix 
test. The virtue of the M-matrix criterion is that it is easy H = [  - 1 1 .  
to check, but  it is normally only satisfied for weakly - 1  - k  
COuPIed SubVstem- Criteria Which do not require an The problem is to find values of k which preserve stab& 
M-matrix test, such as (5) above and the criteria in [8, 91 ity. 
are generally more difficult to apply, but are less  reStiC- From Theorem 5, a sufficient condition for stability is 
tive in terms of the degree of Coupling  allowed b e t ~ e e n  that there exist a diagonal P > O  such that P -   A ’ P A  >0, 
the subsystems.  where 

multi-output situation, but unfortunately the resulting sta- 1 1 -  1 

bility criterion is not  as easy to check as in the single-in- ’ = [  ;][ -1 -:I=[ -1 r k ] ‘  
put-single-output  case. 

Theorem 5 may also be extended to a multi-input- 
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Applying the simplest method in the Appendix, stability 
follows if the matrix 

has positive principal minors; that is, if Ikl< 1. This is also 
the  result obtained by the method of [5 ] ,  [6]. 

Alternatively, stability follows if there is a diagonal 
P > O  such that PF+  F'P >0, where F=( l -A) ( I+A) - ' .  
Since F is a  2  X2 matrix, it is  easily  shown that this is 
equivalent to requiring F to have  positive principal 
minors. Applying this condition, the stability condition 
becomes - 1 < k <  5. v v v  

Example 2: Consider the system of Fig. 1, where the 
subsystems Z , , Z , . Z ,  are all passive. The interconnection 
matrix is 

1 0 -  

Theorem 3 does not predict stability in this case, since 
none of the subsystems is VSP or USP. However Theorem 
4 predicts stability if there exists a diagonal P > O  such 
that PH+  H'P > O .  Of the methods suggested  in the Ap- 
pendix to  check  this inequality, let us consider two alter- 
natives: 

i) The inequality holds if H is quasidominant. A trivial 
calculation shows that this  is true if a > 0, /3 > 0, y > 0 and 

ii)  Applying  decision  theory methods [21],  [22], it is 
found after a tedious calculation that the necessary and 
sufficient condition for the existence of a suitable P is 
a>O, p>O, y>O and - 8 @ y < k < a p y .  
This is the best result that can be obtained using the 
stability criteria of this paper. v v v  

As both of these  examples illustrate, the main effort in 
applying the results of this paper lies in deciding which of 
the existence criteria given  in the Appendix should be 
used. The decision theory approach invariably gives the 
best  results, but it  also  involves the greatest computational 
effort. Of the remaining methods, the authors have found 
that the quasidominance condition of Theorem A1  usually 
(but not invariably) gives the best results. 

Ikl < 4 Y .  

VIII. CONCLUSIONS 

By using the concept of dissipativeness,  it has been 
possible to produce stability results which are valid in 
both a Lyapunov stability setting and an  input-output 
setting. Moreover, the main result of this paper meorem 
I )  includes in a straightforward way  many of the previ- 
ously published input-output criteria. Existing Lyapunov 
stability criteria are not necessarily included in the present 
results, since they proceed from substantially different 
assumptions. However,  it  is  possible to show that, in at 
least some of the previous  works on Lyapunov stability, 
the assumptions imposed  imply that each subsystem has 

Fig. 1. Interconnection of passive systems. 

finite gain; in such cases the present paper gives 
simpler and more general stability criteria. 

The input-output stability results of this paper are 
formally more general than the Lyapunov stability results, 
in that they require fewer assumptions. On the other hand, 
the Lyapunov approach is frequently more  useful in ap- 
plications, since it provides a method of estimating stabil- 
ity boundaries in the case of nonglobal stability. 

The techniques used in proving Theorems 1 and  2  can 
be extended, in a fairly obvious  way, to cover nonlinearly 
interconnected systems. It is difficult to state a general 
stability criterion-in the spirit of Theorem I-for the 
case of nonlinear interconnections, because of the 
numerous different ways in which one could place bounds 
on  the nonlinearities. However,  [30]  shows one possible 
generalization of Theorem 2. 

APPENDIX 

To apply the stability criteria of this paper, it is  neces- 
sary to find conditions under which inequalities like 

or 

P-A'PA > O  ( A 4  

are satisfied for some  positive definite diagonal P, and 
known F or A .  In general this  is a problem of decision 
algebra [21].  [22]: and although there are algorithms which 
produce necessary and sufficient existence conditions 
after a finite number of rational operations, these algo- 
rithms are tedious to apply. Fortunately, there are simple 
szdficient conditions for such a P to exist,  in terms of the 
quasidominance of certain matrices. 

An n X n matrix F is called quasidominant if there exist 
positive  real numbers d,;  . . ,d, such that 

d ~ . ;  > 2 4lxJ for all i .  
j+i 

Equivalently, let 2 be the matrix with elements 

hi =x; 
I . =  rl - lx,l, forj+ i 

Then F is quasidominant iff all leading principal minors 
of F are positive 1231. 

Theorem A I :  If F is quasidominant, then there exists a 
positive definite diagonal P satisfying (A.1). 
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Theorem A2: If the matrix A” with  elements 

is quasidominant, then there exists a positive definite 
diagonal P satisfying (A.2). 

Proofs of Theorems A1 and A2 may be found in [23], or 
alternatively may be derived  without too much difficulty 
from the related results  in [3],  [24],  [25]. If the elements of 
F or A exhibit certain special  sign patterns, then the 
quasidominance conditions become both necessary and 
sufficient for the existence of an appropriate P [24],  [25]. 

The inequalities (A.l) and (A.2) may  also be related via 
the transformation F = ( I - A ) ( I + A ) - ’ ,  A = ( I + F ) - ’  
- ( I -  F) .  Since it can  happen  that a matrix F fails to 
satisfy  the condition of Theorem AI but ( I +  F ) - ’ ( I -  F )  
satisfies the condition of Theorem A2 (or conversely),  this 
provides a further sufficient  existence condition. (Given 
sufficient  persistence, one can extend the search even 
further, by  trying a number of other transformations- 
such as A = e F  or F=(I+A)(I-A)-’-which  can  be 
used to link (A.l) and (A.2)). 

More complex  inequalities can  be  handled by  similar 
methods. For example, the inequality 

X’PZX-  Y‘PZ Y > 0 
(where Z and P are both diagonal), can  be checked  via 
Theorem A1 after setting F = Z ( X -   Y ) ( X +  Y)-’. If Z is 
a unit matrix and X is invertible, then an alternative 
method is to set A = YX - ’ and use Theorem A2. 
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