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Stability Results for 
Nonlinear Feedback Systems* 

D. J. HILL+ and P. J. MOYLANt 

A theory based on abstract energy concepts can be used to unify and extend known results 
on the stability of nonlinear feedback systems. 
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Summary--This paper presents an approach towards deriving 
sufficient conditions for the stability of nonlinear feedback 
systems. The central features of the approach are twofold. Firstly, 
useful stability tests are obtained for the case when the 
subsystems have nonlinear dynamics; secondly, a unifying set of 
general stability criteria are given, from which known situations 
can be treated as special cases and new ones are handled with 
equal ease. The results are obtained by use of a recently 
developed theory of dissipative systems. 

I. INTRODUCTION 

THE LITERATURE on nonlinear control system 
stability largely attends to the problem of finding 
conditions for which a linear dynamical system with 
nonlinear feedback is stable; historically, this work 
has revolved around the solution of the so-called 
Lur6 problem[l]. A major landmark in this work 
was the realization by Popov[2] that, for a given 
sector constraint on the nonlinearity, a useful 
restriction on the linear system, which ensures 
stability, can be expressed as a frequency domain 
condition. Subsequently, numerous other stability 
criteria of this nature have been developed and are 
now accessible in texts on stability theory--see refs 
[3 5, 22]. In this paper we present an approach for 
unifying these stability criteria, by viewing the 
frequency domain restrictions as special cases of a 
general, time domain, input-output property; fur- 
thermore, the stability criteria are formulated for 
situations where the dynamics belong to a broad 
class of nonlinear systems. The known results for 
linear dynamics can be easily extracted as special 
cases, and somewhat similar stability tests are seen 
to be available if the dynamics are nonlinear. 

Roughly speaking, three techniques have been 
adopted in studying nonlinear feedback systems; 
these are the Lyapunov approach, the use of 
operator theory, and Popov's hyperstability ap- 
proach. Examples of these approaches may be 
found in recent books on stability theory; for 
example, the works of Narendra and Taylor[3] and 

*Received 13 January 1976; revised 1 October 1976. The 
original version of this paper was not presented at any IFAC 
meeting. It was recommended for publication in revised form by 
associate editor I. Landau. 

tDepar tment  of Electrical Engineering, University of New- 
castle, New South Wales, 2308, Australia. 

377 

Willems[-4] have adopted the Lyapunov approach, 
Desoer and Vidyasagar[-5] consider the use of 
operator theory while Popov's work has been 
summarised in [22]. In [3], the results are obtained 
by using the Kalman-Yakubovich-Popov Lemma 
or Postive Real Lemma[6-9]. The Positive Real 
Lemma has strong connections with the concept of 
hyperstability[22]; so the two approaches have 
close contact. Reference [4] discusses an alternative 
way to derive Lyapunov functions which is based on 
a theory of path integrals due to Brockett[10]. The 
operator approach of I-5] is a logical extension of the 
work of Zames[ll].  The main theorems in [5] 
depend on the subsystems of the feedback system 
having the input-output properties of passivity, 
finite-gain, or conicity. Despite the generality of 
these results (the subsystems are considered as being 
causal mathematical operators and so, in general, 
can be infinite-dimensional, nonlinear, and time- 
varying), they are obviously limited in application 
to situations where useful criteria exist for testing 
such input-output properties. Only linear time- 
invariant systems with nonlinear feedback have 
been studied in this regard[4, 11]--the same class of 
feedback systems considered by the other methods. 
Indeed, the criteria obtained by all three methods 
are similar. Prominent amongst these are the Popov 
criterion and the various forms of the circle 
criterion. 

The key to formulating a theory, using the 
Lyapunov stability approach, which unifies the 
above mentioned stability criteria was provided by 
Willems[12]. He proposed a definition for the 
property of dissipativeness for abstract dynamical 
systems: an abstract power input is associated with 
the system, and dissipativeness corresponds to the 
existence of a function, called a storage function, 
having the properties of stored energy in physical 
systems. This is an internal property of a system 
represented by state equations; however, it is easily 
interpreted as an input-output property for which 
such properties as passivity, finite gain, and conicity 
are special cases. In [13-15], a characterization of 
dissipativeness, in the input-output sense, was given 
for a large class of nonlinear systems, namely, those 
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with time-invariant finite dimensional state equa- 
tions in which the control appears linearly. This 
result follows as a blend of the idea of dissipativeness 
and work done by Anderson[9] and Moylan[13] on 
characterizing passivity for finite dimensional sys- 
tems. For this class of dynamical systems, the 
storage functions are computable (in the sense that 
they arise as the solution of a set of algebraic 
equations)--an essential feature for applications. 
Willems[12] has suggested, in rather general terms, 
the usefulness of the concept of dissipativeness for 
studying stability. The essence of the argument is 
that, as energy functions, the storage functions are 
appealing candidates for Lyapunov functions. Some 
results in this direction have appeared in [14], for 
nonlinear systems of the above mentioned form. 

It is the purpose of this paper to explore an 
approach, based on dissipativeness ideas, for deriv- 
ing results on the stability of such nonlinear systems 
when subjected to feedback. The feedback can be 
nonlinear, and either dynamic or memoryless. 
General criteria are given for stability and asymp- 
totic stability. These include, as notable special 
cases, Lyapunov versions of the operator results in 
[11] and generalizations of known Lyapunov 
stability criteria for the case of linear dynamics. The 
theorems also allow us to give conditions for 
stability in situations that have not been previously 
studied. When the dynamics are linear, frequency 
domain criteria can be extracted by invoking a 
frequency domain criterion for dissipativeness. For 
nonlinear dynamics, use of the stability criteria 
involves the solution of nonlinear algebraic equa- 
tions. At least for subsystems of low dimension, this 
leads to stability tests which are feasible for 
application. 

The structure of the paper is as follows. In section 
lI, we briefly review the theory of dissipative finite 
dimensional systems. Sections III and IV consider 
general stability criteria for the cases of dynamic and 
memorytess feedback respectively. 

I1. THE THEORY OF FINITE-DIMENSIONAL 
DISSIPATIVF SYSTFMS 

This section presents a brief review of the theory 
of dissipativeness for nonlinear finite-dimensional 
systems. A detailed treatment can be consulted in 
references I13-15]. The approach is related in many 
respects to that of Willems[ 12]. 

The systems to be studied are described by the 
equations 

= f ( x )  + G(x)u 
(1) 

y=h(x)+ J(x)u 

where x, u, and y have their values in finite- 
dimensional real Euclidean spaces. The functions 
f ( ' ) ,  G(-),  h ( ' ) ,  and J ( '  ) are real appropriately 

dimensioned functions of the state vector x. with/t01 
= hi0 ) = 0. It is assumed that these functions possess 
some mild smoothness properties: this relates to 
certain existence questions in the theory and is 
inessential to the practical application see ref. [ 14] 
for a more precise discussion. We also impose the 
restrictions that the system (1) is completely 
reachable (that is, for a given xl and tl, there exists a 
to < t~ and a locally square integrable u( • ) such that 
the state can be driven from X(to)=0 to x(tl )=x l  ), 
and zero-state detectable (that is, u(t)-O and y(t) 
-= 0 implies x (t) - 0). The latter assumption just says 
that it is possible to tell if the system is in the zero 
state or not, by observing the output. For linear 
systems, these restrictions are equivalent to com- 
plete controllability and observability. 

Balakrishnan[16] has shown that, under very 
mild restrictions, any controllable nonlinear system 
with a finite-dimensional state space has a repre- 
sentation of the form (1). 

We associate with (1) a supply rate 

w(u, y )= y' Qy + 2y'Su + u'Ru (2) 

where Q, S, and R are constant matrices with Q and 
R symmetric; The system (1) with supply rate (2) is 
said to be dissipative if for all locally square 
integrable u( • ) and all tl > to, we have 

~tt~ w(t ) dt > 0 (3) 

with x ( to )=0  and w(t)=w[u(t),y(t)] evaluated 
along the trajectory of (1). We impose the restriction 
on w(. ,  ") that for any yv~0, there exists some u 
such that w(u,y)<O; this can be seen to prevent (3) 
from being a trivial property. 

Under these assumptions, the following result can 
be proved[14]. 

Theorem 1. The system (1) is dissipative with 
respect to the supply rate (2) if and only if there exist 
real functions ~b( ' ) , / ( . ) ,  and W(" ) satisfying th(x) 
>0  for all x 5a0, 0(o) =0, and 

+(x) = -  (~(x)+ W(x)u)'tf(x)+ W(x)u) + w(u, y) 
(4) 

along the trajectories of (l). 
The function q~(- ) is called a storagefi~nction and, 

in general, is non-unique. Equation (4) can be 
viewed as a power balance equation for system (1). 
In [14], it is shown that (4) is equivalent to a set of 
algebraic equations; this facilitates the testing of a 
given system for dissipativeness. For linear systems 
dissipativeness can be checked by frequency domain 
techniques[11, 12, 15]. 

In [14] it is shown that the algebraic criterion for 
dissipativeness provides a technique for generating 
Lyapunov functions for the autonomous system 2 
= f ( x ) .  We now turn to the extension of these ideas 
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to feedback systems. For convenience, the special 
supply rates which will be used in the sequel are 
presented in Table 1 with the name of the 
corresponding form of dissipativeness. 

TABLE 1. SPECIAL SUPPLY RATES 

Supply rate w(u, y) Type of dissipativeness 

u'y 
u'y - eu'u, for some e > 0 
u'y-ey'y,  for some e>0 
u'y-glu'u -gaY'Y, 

for some q >0 and 
e2>0 

u'y - y'y 
k2u'u -y 'y ,  k scalar 

y' y--g2u' u 

( y -au) ' (bu-y ) ,a<b  

(y -au) ' ( y -bu) ,aNb  

passive 
U - strongly passive (USP) 
Y - strongly passive (YSP) 

very strongly passive (VSP) 
contractive 
finite gain; k is called the 

upper gain bound 
lower bound on gain; E is called 

the lower gain bound 
interior conic; system is said to 

lie inside the sector [a, b] 
exterior conic; system is said to 

lie outside the sector [a, b] 

III. STABILITY RESULTS FOR 

DYNAMIC FEEDBACK 

Systems of the form given in Fig. 1 will be 
considered throughout this paper. In this section, 
the subsystems H1 and H2 have state equations 

SCi = f (X i )  + Gi(xi)ui 

Yi = hi (Xi) + Ji (Xi)Ui 

for i = 1,2. We also assume that the feedback system 
is well defined; this requires the matrix 
I + J2 (x2)Jl (xi) to be nonsingular for all x~, x 2 . 

H1 ~ - ~  

+ 

H2 

FIG. 1. Feedback configuration. 

e2 

Theorem 2. Suppose that the two subsystems H1 
and H 2 a re  dissipative with respect to supply rates 

wi(ui, Yi) = YlQiyi + 2ylSiul + ulRiui 

i=1 ,2  

Then the feedback system is stable (asymptotically 
stable) if the matrix 

0 =  I Q1 +o~R2 
- S1 + ~S 2 

-S1  + c¢S~] 

R1 +ctQ2 [ 

is negative semidefinite (negative definite) for some 
~>0.  

Proo f  Take as a Lyapunov function 

4)(X1,X2)"~'@l (X1) q-O~)2(X2) 

where q$1 and q~2 are the storage functions for H1 
and H2. Then from Theorem 1, it follows that 

~ Wl (Ul, Yl ) + 0~W2 (U2, Y2 ) 

along the zero input trajectories of the feedback 
system. The second line follows by setting ul --- - Y2, 
N2 ~ Y l  " 

The result is now easily obtained from standard 
Lyapunov stability theory[ 17] (to conclude asymp- 
totic stability, one can use a contradiction argu- 
ment based on the LaSalle invariance principle and 
zero-state detectability of H1, H 2 ). [] 

By strengthening the observability requirements, 
the conditions on 0 can be weakened. The following 
theorem illustrates this point. 

Theorem 3. With the same assumptions as in 
Theorem 2, suppose that (~ __< 0 and $1 =c¢S~. Then 
the feedback system is asymptotically stable if either 

(i) the matrix (Q1 + a R E )  is nonsingular and the 
composite system H ~ ( - H 2 )  is zero-state detect- 
able, 
or  

(ii) the matrix (R1 + ~Q2) is nonsingular and the 
composite system HEH 1 is zero-state detectable. 

Proo f  In case (i), we have t}__<0 with equality 
only if y~ =0. If H1 (--HE) is zero-state detectable, 
then y 1 (t) - 0 implies that x 1 (t) - x 2 (t) - 0 and we 
can deduce asymptotic stability by the usual 
contradiction argument. In case (ii), a similar 
argument applies. 

[] 

Theorems 2 and 3 provide stability criteria in 
terms of general quadratic supply rates for sub- 
systems H1 and H2. We now illustrate the utility of 
these results by specializing to the supply rates in 
Table 1. 

Firstly, consider H1 and H 2 to be passive. 
Corollary 1. If both Ht and H2 are passive, then 

the feedback system is stable. Asymptotic stability 
follows if, in addition, any one of the following (non- 
equivalent) conditions is satisfied: 

(a) One of i l l  and H 2 is VSP. 
(b) Both H1 and H 2 are  USP. 
(c) Both H1 and H2 are YSP. 
(f) H1 ( - H2 ) is zero-state detectable, and either 

(i) H E is USP, 
or  

(ii) H1 is YSP. 
(e) H 2 H 1 is zero-state detectable, and either 

(i) H E is YSP, 
or  

(ii) H I is USP. 
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Proql£ Choosing ct = 1, 0 is of the form 

0 = [  - t h  xl--~;121 0 
0 --8211--t.'221 ] 

with the e u either zero or positive, depending on 
which forms of strong passivity are assumed. By 
checking the various combinations, results (a?(c) 
follow from Theorem 2, while (d) and (e) follow from 
Theorem 3. 

[] 
This result is a Lyapunov stability version-  or, 

more precisely, a refinement--of the positive oper- 
ator theorem[ l l ] .  As given in [-111, the result 
requires that H1 be passive and that H2 be USP and 
finite gain. It is easy to see that this corresponds to 
case (a) in Corollary 1. 

The next result deals with the case where H l and 
H 2 have finite gain. 

Corollary 2. Suppose that H1 and He have finite 
gain with upper gain bounds of k I and k 2 . Then the 
feedback system is stable (asymptotically stable) if 
klk2 <= l(klk2 < l ). 

Proof We have 

0 = I ( ~ k ~ -  1)I 0 1 
0 (k~ - ~ ) I  " 

The result is then immediate from Theorem 2. 
[] 

This result corresponds to the small gain theo- 
rem[111. 

Another well known operator theorem[l  l] is 
based on the property of conicity; the Lyapunov 
version is as follows. 

Corollary 3. Suppose that H 2 is inside the sector 
[a+A,  b - A 1 ,  where b>O, and H1 is dissipative 
with respect to the supply rate 

W1 ( u l , y  I )=aby'lyl + (a+b)u'D'l 

+ (1 - b6)(l +aa)u'lul. (5) 

If both of the constants k and 6 are zero, then the 
feedback system is stable. If either of these constants 
is zero and the other positive, with H1 of finite gain if 
a = A = 0, then the feedback system is asymptotically 
stable. 

Proof The case where A = 6 = 0  follows im- 
mediately from Theorem 2. The details for the other 
cases are straightforward but somewhat tedious. To 
illustrate, we will now consider the case of6 = 0 and A 
>0. 

We have 

0= 
( -  (c~- 1)ab-~A(b-a)+~A2)l  ½(~- 1)(a+ b)l] 

½(~-l)(a+b)l  - (c~- 1)I ]" 

Then it can be checked that 0 is negative definite if 
the inequalities 

~>1 

, ( ,~- l )[ 'b-a~ 2 
A t h - . - a , >  

are satisfied. Since b - a  > 2A, this can be achieved 
by making (:~ - 1 ) suitably small. 

If A = 0 and 6 > 0, the special cases of a > 0, a = 0, a 
< 0 need to be considered separately. (Note that the 
finite gain specification for the case a = A = 0  is 
effectively just a modification of w I . ) 

In each case, the result follows from Theorem 2. 

Equation (5) requires that H 1 be interior conic ifa 
< 0, exterior conic if a > 0, or that 

H1 +lb I 

be USP if a = 0. It is of interest to observe that the 
usual method of handling conic systems is to use a 
transformation putting the system in a form suitable 
for application of the small gain theorem[5, 11]: 
here the result followed directly from a general 
criterion. For the general class of systems treated in 
[111, Lyapunov versions of Corollaries I and 2 have 
been obtained in [-18] by an alternative approach. 
Roughly speaking, the approach was to invoke the 
operator theorem to establish finite gain stability, 
assume that the overall system has a minimal state 
space representation, and use a connection between 
finite gain and asymptotic stability. The present 
approach, admittedly in a less general setting than 
that of [11,18], appears to be more direct. In 
addition there are situations where the present 
approach predicts stability despite the failure of the 
criteria in [11] and [181. 

The situations treated by Corollaries 1 to 3 have 
been presented because of their well-established 
importance; however, the following further example 
illustrates the ease with which the general stability 
criteria handle relatively unfamiliar situations. 

Corollary 4. Suppose that H1 is dissipative with 
respect to the supply rate If(b/l, Yl )z  U'I Yl --m2u'l t/l, 
m being a scalar (this implies that H~ is USPL and 
H2 has a lower gain bound o f / .  Then the feedback 
system is asymptotically stable if 

1 
/2>m2. 

Proof We have 

I--~/ 
21 

O. = ] - -  ( m  2 - - o ~ ) I  



Stability results for nonlinear feedback systems 381 

and this matrix is negative definite if 

1 
(2 > 4~(m 2 _ ~) 

andO<c t<m 2. 
Choosing 

m 2 

2 

minimizes the bound on ~2 and gives the required 
result from Theorem 2. 

[] 
In the case where the dynamical subsystems are 

linear, the above results can be interpreted in terms 
of constraints on the transfer function matrices. This 
is easily achieved via a frequency domain criterion 
for dissipativeness[15]. Well known examples are 
that passive systems have positive real transfer 
functions and contractive systems have bounded 
real transfer functions[9, 19]; in [15], a criterion is 
given for general quadratic supply rates. For 
nonlinear dynamics, one has to resort to the 
technique in [14, 15] to test for dissipativeness. 

IV. STABILITY RESULTS FOR 

MEMORYLESS FEEDBACK 

The technique of this paper applies equally well 
when H2 in Fig. 1 is memoryless. More specifically, 
the input-output relation for HE is of the form Y2 
=~(u2) where qJ(.) is an unknown nonlinearity 
such that the feedback system is well defined. The 
subsystem H1 is still assumed to have state 
equations of the form (1). 

We first observe that Theorems 2 and 3 have 
direct counterparts here. To see this, suppose that 
H~ is dissipative with respect to supply rate 

wa (ul, Ya ) = Y] Q ayl + 2y] SlUl + u] Rltq 

and H 2 is dissipative in the sense that 

W2 (U2, Y2) = y'2Q2y2 + 2y'2S2u2 + u'2R2u2 >=0 

for all u2(' ). Taking the storage function for H 1 as a 
Lyapunov function, it is evident that the same 
conditions for stability, as were given in Theorems 2 
and 3, apply here. Note, however, that in Theorem 3 
the zero-state detectability requirements on the 
composite systems can be replaced by simple 
restrictions on ~(.) .  Obviously the results in the 
Corollaries of Section III have counterparts here, 
except that we now interpret the constraints o n  H 2 

as restricting ~k('). 
Our main consideration for this section of the 

paper is a generalized treatment of the Lur6 
problem[I,6,20]. The stability of the feedback 
system is investigated using a Lyapunov function 
which is the sum of the storage function for H1 and 
an integral of the nonlinear feedback. The first 
general criterion for stability is now presented. 
D 

Theorem 4. Suppose H1 has no direct feed- 
through (that is, J = 0 in (1)) and is dissipative with 
respect to the supply rate 

wl (ua, yl )= y'x Qlyl + 2yi Slul + u'x R Dq + pi TUl 

for some constant matrix T. Let ~( . )  satisfy the 
conditions: 

(i) w2(uz,y2)=y'2Q2yz + 2y'2S2u2 +u'2Rzu2 >0. 
(ii) T~k(.) is the gradient of a real valued 

function. 
(iii) O 'T ' a>0 fo r  all a. 
Then the feedback system is stable (asymptoti- 

cally stable)if 0 <0  (Q <0), where 0 is the matrix 
introduced in Theorem 2. 

Proof The given dissipativeness of H~ implies 
that the system 

~c= f (x)+ G(x)u 

y = ~hJ~ff)f(x) [° l + 8h(ff)G(x) u (6) 

is dissipative with respect to 

Wl(U,y)=y,[Qol 07 _ ,[-sa-] 

Let ~b(') be the corresponding storage Iunctlon; 
now let us take 

V(x)=4)(x)+ S~ (') ¢'(a)T'da 

as a Lyapunov function. Assumptions (ii), (iii) 
ensure that the integral is positive and well 
defined[21]. Then from Theorem 1 and assumption 
(i), we have 

V <=wl(ul,yl)+otw2(u2,Y2)+~'(yl)T'yl 

where c~ > 0 

, ^[Yl]  using u1=-qJ (y l ) .  = [ y i  y2]Q y2 

The result then follows from the same arguments as 
were used in the proof of Theorem 2. 

[] 
Note that the conditions on 0 in Theorem 4 are 

the same as those for Theorem 2. Similarly, the 
following result corresponds to Theorem 3 and is 
proved using the same sort of arguments. 

Theorem 5. With the same assumptions as in 
Theorem 4, suppose that 0 <0  and $1 =ctS[. Then 
the feedback system is asymptotically stable if either 

(i) the matrix (QI+aRz) is nonsingular and 
~0(0)=0, 
or  

(ii) the matrix (R1 + ~Q2) is nonsingular and ~(a) 
= 0 implies that a = 0. 
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For a particular feedback system, Theorems 4 
and 5 will give a stronger stability assessment than 
the direct counterparts of Theorems 2 and 3 if a 7' 
can be found which makes the supply rate u,~ less 
restrictive on HI than one of the usual form. 

The following result is a generalization of the 
Popov theorem for multivariable linear systems 
with nonlinear feedback[8, 20]. 

Corollary 5. Suppose H1 has J =0, )q +q))i =0  
is not satisfied for zero input, and this system is 
dissipative with respect to the supply rate 

wl(ut,Yt)=y'tul +u'lKul +qO'lu 1, q>0.  

Let q)(') be the gradient of a real valued function 
and satisfy 

~,(0)=0 

~p'(a)a-~b'(cr)K~(a)~ea'a forall 64;:0 

where K is a nonnegative definite matrix. Then the 
feedback system is asym'ptotically stable (stable if 
~,=0). 

Proof We have 

o °o] 
and the result follows from Theorems 4, 5. 

[] 

As in Section III, there are obviously an indefinite 
number of other special cases we could consider. 

The above results account only for the case of 
~0(.) being independent of time. For the time- 
varying case, the conditions that have been derived 
here give uniform stability; further restrictions on 
h(x) are needed to achieve (uniform) asymptotic 
stability[4]. 

The results of this section generalize presently 
known frequency domain criteria which refer to the 
case where H1 is linear. Indeed, use of the frequency 
domain condition for dissipativeness in [15], in 
conjunction with the memoryless feedback versions 
of Corollary 3 and Corollary 5, gives easily the circle 
and Popov criteria respectively--these are generally 
accepted as the main frequency domain criteria[3- 
5]. 

V. CONCLUSIONS 

The principal contribution of this paper has been 
to present general stability criteria for the stability of 
feedback systems in which both subsystems are 
nonlinear and time-invariant. These results contain, 
as special cases, presently known criteria which deal 
with the case of linear dynamics. 

It would be of interest to explore these ideas for 
discrete time, time-varying stochastic feedback 
systems. Another important extension is in the 

direction of more general classes of interconnected 
systems. Also the theory of [15] gives the possibility 
of presenting corresponding instability results. 
Work on these topics is currently in preparation by 
the authors and will be reported separately. 
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