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which contradicts  the  requirement  that ek be bounded. It is not difficult 
to show that  there exist no i > cop, and P that  ensure stability for all 
allowable parameter variations. Q.E.D. 
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The  Stability of Nonlinear  Dissipative Systems 
DAVID HILL, MEMBER, IEEE, AVD 
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Abstract--This short paper presents a  technique  for  generating 
Lyapunov functions  for  a broad class of nonlinear systems  represented by 
state eqnations.  The  system, for which a Lyapunov  function is required, is 
assumed to have  a  property called dissipativeness. Roughly speaking, this 
means that the  system  absorbs more energy from the external world than it 
supplies.  Different types of dissipativeness can be considered  depending on 
how one chooses to  define "power  input." Dissipativeness is shorn to be 
characterized by the existence of a  computable  function  which can be 
interpreted as the  "stored  energy" of lbe system. Under certain conditions, 
this energy  function is a Lyapunov  function  which establishes stability, and 
in some cases asymptotic stability, of  the isolated system. 

I. INTRODUCTION 

In the study of a physical  system,  such as an electrical  network or  a 
mechanical  machine,  the  concept of stored energy is often useful in 
deducing  the behavior of the system. In many control problems,  how- 
ever, one is  dealing  with an abstract  mathematical model  where it may 
be  difficult or even  impossible to find  some property of the model  which 
corresponds to physical  energy. In this short  paper we show,  for a  certain 
class of nonlinear systems, that an ''energy" approach can still be  useful 
in  stability  analysis,  despite the  fact  that  the "energy"  might  not have 
any physical  meaning. In effect, OUT technique  is a method for generat- 
ing  Lyapunov functions. 

The theory  described here  has its origins in work  by  Moylan and 
Anderson [ 1]-[3] and Willems  [4]  on the properties of passive  systems. 
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For our purposes, a passive  system can  be defined as a system  which 
always  dissipates  energy,  provided the energy input to the system  is  such 
that  the  product of system input  and  output represents input power. 
(This  makes  sense  physically if the system  is an electrical  network [SI; in 
other cases, there might  be no simple  physical interpretation.) Several 
useful  properties of passive  systems  have  been noted in [2] for  the linear 
case and in [l], [3] for nonlinear systems. 

The notion of passivity  was  extended  by  Willems [4] to allow a  more 
general definition of input power. A "dissipative  system"  is  defined in [4] 
to  be  one  for which a  supply  rate  (input power) and storage  function 
(stored  energy) can  be  found, with the  property  that (in a sense made 
more precise in [4])  energy is always  dissipated. As one might  expect, 
there  are  some useful connections between  dissipativeness (in Willems' 
sense)' and  Lyapunov stability. 

The  present  short  paper  extends  the passivity  results of [I] using 
concepts very  similar to those of Willems [4]. Our  approach differs from 
that of Willems  primarily because we treat bsipativeness as an in- 
put-output  property;  that is,  we do not postulate  the existence of an 
internal  storage  function. However, we deduce the  existence of such a 
storage  function (in general  nonunique), so it  could  be  argued  that this 
difference is unimportant. A more  noticeable  difference  between OUT 
results and those of [4] is that, by  sacrificing some generality, we obtain 
results  which are considerably more explicit. The  central result of this 
short paper is an algebraic  criterion,  in  terms of functions of the system 
state, for the  input-output property of dissipativeness. This result  is then 
used to derive  stability criteria. 

The structure of the  short paper  is as follows. In Section I1 we derive 
the algebraic criterion  for dissipativeness,  which leads to computable 
storage  functions.  These  functions  have the properties of Lyapunov 
functions  and in  Section I11 are used to get s t a b ~ t y  results. In Section 
IV, the  special case of passive  systems is considered. 

11. ALGEBRAIC CRITERION FOR DISSIPATIVENESS 

The systems to be  studied are described  by the  equations 

i = f ( x ) + G ( x ) u  

y = h ( x ) + J ( x ) u .  (1) 

The values of x, u, and y lie in R n , R m ,  and RP, respectively. The 
admissable controls  are taken to  be locally square integrable. T h e  
functionsf:R"-tR", G : R " + R n X m ,  h:R"-tRP of the  state vector x 
satisfy f(0) = 0, h(0) = 0, and  the following assumption. 

Assumption I :  The  functions  appearing in ( I )  have sufficient smooth- 
ness to make the system  well defined;  that is,  for any x ( t J E  R" and 
admissible u( .), there  exists a unique  solution on [ to .  00) such that y (  .) is 
locally square integrable. 

The  above  formulation includes a  broad class of systems. In fact, 
Balakrishnan [7] has claimed  that, under quite  unrestrictive  conditions, 
any time-invariant  finite  dimensional  system can  be represented by ( I )  
with an appropriate choice of the  state  vector. However, it is not known 
whether the transformation in [7] will preserve our Assumption 1 and 
finite-dimensionality of the state space. Rather  than explore  these diffi- 
culties, we will adopt the attitude  that  the  representation ( I )  is 
sufficiently  general to warrant  study in its own  right. 

Motivated  by  Wdlems  [4], we associate  with ( I )  a sup& rate 

w ( u , y ) = y ' 9 + 2 y ' S u + u ' R u  (2) 

where Q E R P X p ,  S E R P X m ,  and R E R m X "  are  constant matrices  with 
Q and R symmetric. The supply rate is an abstraction of the  concept of 
input power. In physical  systems, input power is associated  with the 
concept of stored energy. For more  general abstract systems,  such as 
given  by ( I ) ,  physical  reasoning fails us, but we can define a possible 

on differential equations (see, for example, [6D. Despite the coincidence in terminology, 
'The word  "dissipative" is used in an entirely different sense  in some of  the  literature 

there IS no connection between the two Qpes of dissipativeness defined in [4] and [6]. Our 
definition is essentially equivalent to  that of Willems  [4]. 
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candidate  for  the  name “stored energy.”’Consider the  function  and tl > to, and  any x(ro), straightforward use of (5) gives 

subject to (1) and x(O)= xW This is called the available storage in [4];  it 
can be  interpreted as the maximum amount of energy which may be 
extracted  from  the system (1). Note  that @=(x) > 0 for all x .  
In the sequel, we shall impose the following assumptions on the system 

(1) and the supply rate (2). 
Assumprion 2: The  state  space of the system (1) is reachable  from the 

origin. More precisely,  given any x ,  and I , ,  there exists a to< t ,  and  an 
admissible control u( .) such  that the state  can  be driven from x(ta)=O to 
x ( t l ) = x l .  

Assumption 3: The available storage +,(x), when it exists,  is a differen- 
tiable  function of x .  

Assumption 4: For  any y # 0 there exists some u such that the supply 
rate (2) satisfies w(u,y) < 0. 

Assumptions 1-3 are  not overly restrictive; in fact,  for linear systems, 
Assumptions 1 and  3  are trivially satisfied. Assumption  4 is simply a 
restriction on the class of matrices Q, S, and R that will be  considered.  It 
is important  to notice that u and y are considered to  be  independent 
variables-that  is,  they are not necessarily related by the state  equations 
(])-for the purposes of Assumption 4. 

We now consider the concept of dissipativeness, which can be inter- 
preted  as saying that  the initially unexcited system can only absorb 
energy. In this connection, it  is worth  noting  that  Assumption 4 ensures 
that  the  definition does not collapse to triviality. 

Definition I: The system (1) with supply rate (2) is said to be dissipa- 
tive if for all admissible u ( . )  and all t l  > t2, we have 

~ o ~ l w ( t ) d r  > 0 (4) 

with x(to)=O and w ( t ) =  w[u(t),  y( t )]  evaluated along the trajectory of 
(1). 

Two important special cases of dissipative systems are  the following. 

passive systems w = u’y 
finite gain  systems w = k%‘u -y’y, k being a fixed scalar. 

A trivial, but useful, observation is that if (1) is dissipative with respect 
to I supply rates wi, i =  1,. . . , I ,  then it is also dissipative with respect to 

for  any set { q} of nonnegative coefficients. 
Notice  that dissipativeness, as just defined, is an  input-output  prop- 

erty of the system. The following theorem, which is the  central result of 
this short  paper,  shows  that dissipativeness can also be characterized in 
terms of the coefficients in  the  state  equation (1). A restricted version of 
this theorem, for passive systems only, appears in [I]. 

Theorem I :  A necessary and sufficient condition  for (1) to be dissipa- 
tive  with respect to supply rate (2) is that there exist real functions 
@: R”-rR ,  I :  R”-+Rq, and W :  R ” + R q X m  (for some integer q) satisfying 

@ ( x )  > 0, d o )  = 0 
V ’ @ ( ~ ) f ( x ) = h ‘ ( x ) Q h ( ~ ) - I ’ ( x ) l ( ~ )  ( 5 )  

$G’(x )V@(x)  = S ’ ( x ) h ( x ) -  W ‘ ( x ) I ( x )  

i ( x ) = W ’ ( x ) W ( x )  

for  all x, where 

d ( x )  = R + J ‘ ( ~ ) s +  S’J ( x )  + J J ( ~ ) Q J  ( x )  

and 

s ( x ) = Q J ( x ) + S .  

Proof: To prove sufficiency we suppose  that +(a), I ( - ) ,  and E‘(.) 
are given such  that (5 )  is satisfied.  Then for  any admissible u( e), any to 

+ i O t 1 [ I ( x ) +  W ( x ) u l ’ [ I ( x )  + W(x)uld t .  (6)  

Setting x(ta) = 0, we have condition (4). 
For necessity, we proceed  to show that +,(-) given  by  (3)  is a solution 

of (5) for some  appropriate  functions I ( . )  and W(.).  
For  any  state x. at r=O,  there exists  by Assumption 2 a time r -  < O  

and  an admissible control u ( . )  defined on [t-l,O] such that x(t-,)=O 
and x(0)=xW From (4), then, 

The  right-hand side of this inequality depends only on x@ whereas u ( . )  
can  be  chosen  arbitrarily on [O,T]. Hence, there exists a  function . 
C : R ”+ R of x such that 

(7) 

whenever x(0)=xW From (9, we have @,(x)< co for all x .  Also, dis- 
sipativeness implies that $1~(0) = 0. 

Now it is shown  in [4] that @a satisfies 

for all t ,  > to and all admissible u ( + ) ,  where x(to)=xo and x ( t l ) = x l .  
Assumption  3 then gives 

along  any  trajectory of (1). To turn this inequality into  an equality, we 
introduce  a  function d :  R” X Rm+R via 

= - V ’ @ = ( x ) [ f ( ~ ) + G ( x ) u l + ~ [ ~ , h ( x ) + J ( x ) u l .  (9) 

From (8), d ( x ,  u) > 0 for all x and u. In addition, it is clear from (9) 
that d(x ,u )  is quadratic  in u. Combining these  two observations, it 
follows that d(x ,u )  may be  factored as 

d ( x , u ) = [ I ( x ) +   W ( x ) u l ’ [ I ( x ) +  W ( x ) u l  ( 10) 

for some functions I :  Rn+Rq, W : R n + R q X m ,  and some integer q. 
(Notice, however, that  the choice of q, I ,  and W is far  from being 
unique.) 

Substituting (10) into (9) gives 

- V ’ @ , ( x ) f ( ~ ) - V ‘ @ , ( x ) G ( x ) u + h ’ ( x ) Q h ( x ) + 2 h ’ ( x ) S  ( x ) u + u ‘ d  ( x ) u  

= I ’ ( x ) I ( x ) + 2 I ‘ ( x ) W ( x ) u + u ’ W ‘ ( x ) W ( x ) u  

for  all x and u. Equating coefficients of like  powers of u, we obtain (5) 
with @ = 9,. n 

Equation (6) can be  interpreted  as expressing an energy balance  for 
system (l),  and shows that  the  functions @(e) are  storage  functions 
satisfying Willems’ definition [4]. The proof of Theorem 1 uses a dif- 
ferent  approach  to  that  adopted in [I] for the special case of passivity. 
There the necessity part of the proof relied upon  Hamilton-Jacobi 
theory. For  a  more complete discussion of dissipativeness along  the lines 
of this short  paper,  the  report [8] can  be consulted. In particular,  it is 
shown in [8] that  the  algebraic  equations (5) possess maximum and 
minimum solutions which correspond  to  the required suppb and aoailabk 
srorage, defined in [4]. (Equation (3) provides the minimum solution. 
This observation will be useful in  a  later section.) - 

We can now give characterizations of dissipativeness, with respect to 
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particular  supply rates, by substituting the  appropriate Q, R, S into (5). 
Example I :  For finite gain, we set Q = - I ,  S = 0, and R = k21 where 

k is a scalar. This gives ( 5 )  as 

V ’ + ( x ) f ( x )  = - h’(x)h(x)  - [ ’ ( x ) [  ( x )  

f G ’ ( x ) V @ ( x ) =  - J ‘ ( x ) h ( x ) -  W ’ ( X ) ~ ( X )  

k Z I - J ‘ ( x ) J ( x ) =  W ( x ) W ( x )  

which,  when  specialized to linear systems,  is a generalization of the 
Bounded  Real Lemma [5]. 

A  differential  version of (6) is given  by the following  result. 
Corollaly: If system  (1) is dissipative  with  respect to supply rate (2), 

then  there exists  a  real function +(.) satisfying + ( x )  > 0, +(O) = 0, such 
that 

I 

for  the system  (1). 
Proof: This is simply  a restatement of (9),  with d ( x , u )  defined as in 

( 10). A 

111. STASILITY OF DISSIPATIVE SYSTEMS 

Willems  [4]  suggests the usefulness of the theory of dissipative  systems 
in  the investigation of system  stability  via Lyapunov methods. The 
Lyapunov  functions  are genertllized  energy  functions,  corresponding to 
I$(.) in Theorem 1. This leads us to consider conditions  for which +(.) is 
positive  definite,  in the sense that + ( x )  > 0 for all x#O. 

Definition 2: The system (1) is  zero-state detectable if, for  any trajec- 
tory such that u( t )=O,y( t )=O implies x(t )=O.  

Lemma I: If the system  (1) is dissipative  with  respect to supply rate 
(2) and zero-state  detectable, then all solutions +(.) of ( 5 )  are positive 
definite. 

Proof: The minimum  solution of (5),  given  by (3), is positive  defi- 
nite if .there exists  a control such that w(t) < 0 on [r,, w), with strict 
inequality on a  subset of positive meashe. Now from Assumption 4, 
there certainly  exists u such that w(b,y)<O for  any y#O. In fact,. the 
quadratic natxe of w(-, .) gives us sufficient freedom to choose  such  a u 
under  the  additional  constraint  that  the chosen u and y be compatible 
with the  state  equations (1). (That  is, if there  exists  any u such that 
w(u,y)<O, then-because w(. .  .) is  quacjratic  in its arguments-there 
actually  exists  a  wide  choice of such u’s. We  could  for  example  choose 
u= K ( x ) y ,  where there is enough freedom  in  choosing K ( x )  to ensure 
that [ I - J ( x ) K ( x ) ]  is nonsingular  for all x.) Accordingly, we can choose 
a  feedback  law u*(.) such that w(u*(y), y ) < O  for y#O, and u*(O)=O. 

We  now have  the desired  result,  provided that we can exclude the 
situation in whichy(t)=O for  almost all t .  However  this  last  possibility  is 
excluded by zero-state detectability. n 

Now we easily obtain  our  main stability  theorem. 
Theorem 2: Let  system  (1)  be  dissipative  with  respect to supply ra‘te 

(2) and zero-state detectable.  Then  the free  system i = f ( x )  is 
(Lyapunov) stable if Q < 0 and asymptotically stable if Q < 0. 

Praoj From  the corollary to Thebrem 1 and Lemma  1,  there  exists 
a positive definite +( .) which  satisfies 

along  the trajectories of x =f(x). The result then follows from  standard 
Lyapunov  stability  [9]  (for  the  case of Q < 0, asymptotic stability  follows 
by  using  a contradiction argument, based  on  the LaSalle Invariance 
Principle  [9] and zero-state  detectability). a 

We see immediately that passive  systems (Q=  R = 0, S =  I )  are  stable 
and finite  gain  systems ( Q  = - I ,  S=O, R = k21) are asymptotically 
stable. That a finite gain system  with a minimal state space is asymptoti- 
cally stable  has been  shown in [ 101 using  a  different approach. 

Theorem 2 has given conditions  for the  local  stability of the 
equilibrium at x = O .  It is evident that to achieve  global asymptotic 
stability, we need  to impose  stronger conditions  on  the system. One way 

to  do this  is to assume that (1) is uniformly  zero-state  detectable,  in the 
sense that  there exists a strictly monotone increasing continuous  function 
/3 (.) defined on [0, w), with /3 (O)=O, and 

and a constant T > 0 such that  for  any x, and to with u(t)=O 

This is similar to the definition of uniform  observability  used  in [lo],  and 
it is  easy to show that  it implies that 

for all solutions e(-) of (5). 

N. STASILITY OF PASSIVE SYSTEMS 

As an illustration of the use of our theory  in  developing  stability 
results for  particular supply  rates,  we  now confine our attention to 
passive  stystems. As observed above  and in [l], passive  systems are 
stable. To achieve asymptotic stability, we introduce  strong passivity-a 
property which  ensures that no nontrivial trajectory is “free of dissipa- 
tion of energy.” 

Definition 3: The system  (1)  is  said to  be 1)  U-strongly  passive (USP) 
if it is dissipative  with  respect to 

w(u,y)=u‘y-au‘u forsomec>O, 

2)  Y-strongly  passive (YSP) if it is dissipative  with  respect to 

w(u,y) = u’y - ~ y ‘ y  for  some z > 0, 

and 3) very-strongly  passive (VSP) if it is  dissipative  with  respect to 

w(u,~)=u‘y-zIu’u-aE2y’y forsomezl>0,z2>0. 

One way to  interpret these  definitions is as follows. A YSP system is a 
passive  system  for  which  a  small amount of positive  feedback does not 
destroy the  passivity property; a USP system can be  similarly interpreted 
in  terms of feedforward.  (The  usual  definition [lo], [ 1 11 of strict passivity 
corresponds to our definition of USP.) A VSP system is, of course, one 
which  is both USP and YSP. Another example of the possibility of 
combining supply  rates in the  manner  mentioned in  Section I1 is pro- 
vided  by obsewing  that a USP and finite  gain  system is VSP. 

We  now summarize stability  results  for  passive  systems  which  follow 
immediately from  Theorem 2. 

Theorem 3: For systems of the  form (l), passive and USP systems are 
stable, while YSP and VSP systems are asymptotically  stable. 

The following  example  serves to illustrate the ideas of tlus short  paper. 
Example 2: We  consider the  equation 

i + f ( x ) i + g ( x ) = u  (12) 

wheref(.), g ( . )  are functions of the scalar variable x and u is a forcing 
term.  Setting u = 0 gives the Lienard equation [9]. 

Letting F ( x ) =  JGf(u)du,  a  set of first-order equations equivalent to 
(12) is 

x, = - F ( x , )  + x2 

x2= - g ( x , ) + u  

where x, = x .  
We combine (13) with the system output  equation defined  by 

y=au,-PF(x,), a > B > O  

and consider the passivity of this  system (of course we could find 
conditions  for  other forms of dissipativeness). It is  convenient to define 
G ( x ) =  JGg(u)du.  

The calculations are straightforward and involve substitution  into (5) 
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and  determination of conditions  for  the existence of a solution. We only 
present here the results for two special cases. 

For a = 1/2, B = 0, passivity  follows if 

G ( x )  > 0 

and 

g ( x ) F ( x )  0. 

The storage function is 

+ , ( x ) = t [ x + F ( x ) I 2 + G ( x ) .  

For a = p = $, passivity follows if 

G ( x ) > O  

and 

f (x) 0. 

The storage function is 

+2(x)=  $x2+ G ( x ) .  

The  functions  and +2 are  standard  Lyapunov  functions used for the 
study of the stability of the  Lienard equation: choice of +2 as a 
Lyapunov  function is motivated by its  interpretation as the sum of the 
kinetic  and  potential energies of (12), and + I = + 2 + i F ( x ) + i F ( ~ ) 2  is 
called the  modified energy function [9]. We have now shown that they 
can  both  be  interpreted as stored energy functions (depending on how 
one defines the system output) arising from  a  study of the passivity of 
(13). 

V. CONCLUSION 

The  main result presented here is Theorem 2,  which relates the 
stability of a  broad class of nonlinear systems to the input-output 
property of dissipativeness. We can characterize dissipativeness by the 
existence of a  computable  function +(.) of the  state. This function is 
thought of as the stored energy of the system  and  under  certain condi- 
tions is a  Lyapunov function. 

Our approach  can also be applied profitably to interconnected sys- 
tems, in particular feedback systems. One can, for example, derive 
Lyapunov versions of the stability criteria of Zames [l  I], using a 
Lyapunov  function which is the sum of the storage functions for the 
individual subsystems. Details of these and  other results are currently in 
preparation  and will be reported separately. 
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Identification of Linear Systems with Time-Delay 
Operating in a Closed Loop in the Presence of Noise 

E. GABAY AND S. J. MERHAV, MEMBER, IEEE 

Abstruct-Xbe subject of this short paper is on-line i d e n t i f i i n  of the 
parameter vector defining a linear dynamical  system  which operates in a 
clased loop in the presence of noise, and  incorporates  a time delay. The 
method is based on the equation  error. Other known subsystems in the 
closed-loop system increase the dimension of the closed-loop parameter 
vector which  tends to degrade the estimation  convergenm  process. By 
means of “composite state variablq” introduced in this short paper, this 
increase is prevented  and the open-loop  parameters  are  directly identified 
from dosed-loop input-output data. The  pure  time  delay  in the closed loop 
causes a  representation  problem  in the equation  error formulation. Tbis is 
overcome by “composite delayed state variables.” The value of the time 
delay is determined by means of ex- parameters  provided  by  a ‘‘higher 
order  model”  and  a  simple on-line search procednre. The method is 
illustrated by simulated  examples. 

I. IhTRODUCnON ANm STATEMENT OF THE PROBLEM 

The  subsystem G(s) of unknown  structure  and  order to be identified 
includes a  pure time delay and is part of a closed-loop system incorpo- 
rating  other  known  dynamical subsystems (Fig. 1). The system is excited 
by a given stationary  random  input,  and  Gaussian  uncorrelated  additive 
noise is assumed to be present in the loop. In terms of Laplace trans- 
forms, G ( s )  is  given  by 

m 

e-” b p i  

n 
G(s)=e-”- N ( s  b) = i = O  

D (s.a) 1 +  c. ajs/ 
J =  1 

where rn, n denote  the highest numerator  and  denominator powers, 
respectively, and rn < n. G(s) operates  in  a closed loop (Fig. 1) with 
other  dynamical elements G,(s), G2(s) and G,(s) having  known  parame- 
ters. Tracking or regulating tasks in  manual  control  are special cases of 
the system in Fig. 1. The following assumptions regarding the input, 
system, and noise are  made. 

Assumption I: The  input ~ ( t )  is a  sample of a given random  stationary 
mean  square  bounded ergodic process. Its  spectral  distribution  guaran- 
tees a persistent excitation of all the modes of G(s). 

Assumption 2: G ( s )  and  the closed-loop system denoted by T ( s )  is 
stable  and time invariant. 

Assumption 3: The noise nl ( t )  (Fig. 1 )  is a zero-mean stationary 
ergodic Gaussian process uncorrelated with x( t ) .  

It is required to provide unbiased estimates of Q and b from ~ ( t )  and  a 
suitably chosen closed-loop system output. Since the sensitivity of the 
closed-loop system output  [output of G2(s)] to variations  in a, b is 
reduced by the loop gain, the system error,  denoted by z ( t )  (Fig. 1) 
which retains this sensitivity, is chosen as the appropriate system output. 
The corresponding closed-loop transfer  function relating x(t) to r ( t )  is 

T(s)=G,(s)[l+Gl(s)G2(s)Gj(s)G(s)1-’. (2) 

In-time  domain, z ( t )  is given  by 

~ z ( t ) = T ( p ) x ( t ) - f n ( t ) = y ( ~ ) + n ( t )  (3) 

wherep’ d’/dt’, i=O, 1,2;.., and 

n ( t )  = - G2 (zJ)G, ( p ) G  ( p ) T ( p ) n ~ ( t ) .  (4) 

y ( t )  is the system  error in the absence of noise. The known subsystems 
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