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Stable Inversion of Linear Systems 

P. J. MOYLAN. MEMBER. IEEE 

Abstract-A new  and computationally efficient algorithm  for inversion 
of linear time-invariant systems is presented. Existence conditions for 
either left- or right-inverse systems are also presented together with 
stability criteria. These criteria indicate that the algorithm will find a 
stable inverse whenever one  exists.  The results apply to both left and  right 
inversion of a  linear system and include the special case of linear finite 
automata or convolutional encoders. 

I. INTRODCCTIOX 

The concept of system inversion has  been  around for some  consider- 
able time. with obvious  applications in areas  such  as  control theory. 
filtering. and  coding theory. For linear systems tvith only a single input 
and  output.  the inversion problem is trivial, and is most easily handled 
using  transfer  function  concepts. For multivariable systems the  problem 
is more complex. both theoretically and  computationally. 

The earliest systematic  approach to the inversion problem  appears  to 
be  that of Brockett and  Mesarovic [ I ] .  In [ I ]  the  concept of jmcrlonal 
reproducibilip. which in broad  terms  means the ability to follow a given 
reference signal. was  introduced.  Reference [ I ]  gave a criterion for 
functional  reproducibility and subsequently Brockett [2] showed how to 
construct  the inverse for  scalar systems. Simplified criteria, and  more 
importantly  methods  for  constructing  the inverse in the  multivariable 
case. were introduced by Massey and Sain [3].  [4]. Dorato [5]. and  Orner 
[6]. An  interesting  development in [4] was the  introduction of the idea of 
“inherent  integration” of a linear system. which led to  bounds  on the 
number of differentiations  required in the inverse system (see.  also, 
Willsky [7]). 

An  important  development.  appearing  at  about the same time as  the 
Massey  and Sain papers [3]. 141. was the  introduction of Silverman’s 
“structure  algorithm” [8],  [9]. Apart  from  his  treatment of time-varying 
systems, Silverman’s approach was important in two respects. First. there 
was no explicit test for invertibility. but  rather i t  was  shown  that a 
system was invertible if and  only if the inversion algorithm  terminated in 
a certain way. This  made  the  overall  procedure  computationally 
efficient. Second. it was shown in [8] and [9] hour the order of the inverse 
system  could  be  reduced at  the  end of the  algorithm. The final inverse is 
probably of the least possible order. A drawback of the  algorithm was 
that it  could only handle systems with equal  numbers of inputs  and 
outputs,  but this has since been rectified by Silverman  and  Payne [IO]. 
Comparisons of the Silverman and Sain-Massey approaches may be 
found in [ 1 I]  and [ 12). 

Two related inversion algorithms  have  been given  by Porter [13]. [14]. 
The algorithm of [I41  is interesting  since  it  contained  the novel idea of 
reducing  the system order  at  each  step of the algorithm.  This was done 
by  relating the problem of inverting a given system to  that of inverting a 
related system with fewer states and possibly also with fewer inputs  and 
outputs. 

A point which has  not  yet  been  mentioned is that  there  are really two 
important classes of inversion problems. Briefly, a left  inverse for a given 
system S is a system S L  which computes  the  input  to S from knowledge 
of its output. A right inverse, on the other hand. is a system S R  which 
computes  the  input  required in order  that S have a certain desired 
output. If both S L  and S R  exist. then  they  are  identical  and the above 
distinction  need.not  be  made.  (This  happens  only  when S has  the  same 
number of inputs  as  outputs.)  Many of the references [1]-[14] treated 
only  the case where  the  input and  output  spaces  have  the  same  dimen- 
sion, so that  the  distinction between left and right inverses was not 
highlighted. However. [I]. [2]. and [14] were clearly looking  for a right 
inverse, while [3],  [4], and [6] were concerned with left inverses. Silver- 
man  and  Payne  [lo]  and  to some  extent  also  Sain  and  Massey  [4] 
covered  both cases. 
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The question of stability of an inverse has  caused  some difficulty. 
Massey  and  Sain [3] were probably  the first  to  point out  the problem. 
since they showed for  one  example  that their algorithm  produced an 
unstable  left inverse where a stable  left inverse was known  to exist.  A 
stability  criterion  has  been given by  Moore  and  Silverman [16], but 
unfortunately  only  for a restricted class of systems. The best results to 
date  are those of Bengtsson [17]. who  proved  inter  alia  that if any  stable 
inverse exists, then  the  minimal (left or right) inverse is stable. Com- 
ments  by  Forney  [IS]  and  Moore  and  Silverman [29] are  also relevant. 

The  main  aim of this  paper is to  describe a computationally efficient 
inversion algorithm. Of all  the  methods discussed. it  is probably closest 
to Silverman’s algorithm [9], although it shares with Porter’s method [ 141 
the  feature of dimensionality  reduction at each step. It is applicable  to 
both left and right inversion, and is believed to  be  computationally  the 
most efficient method yet available. At the  same time. new invertibility 
criteria,  including  stability criteria. are  presented. These are superficially 
similar to the  criteria of Dorato [5] and Wang and  Davison [22]. but 
differ in one  important  respect:  the  criteria of [5] and [22] are  criteria  for 
invertibility of a transfer  function matrix. whereas those of the  present 
paper relate to invertibility of a system specified by a set of state 
equations.  (It will later be  shown  that  these two sets of conditions are 
equivalent.  but it is not a priori obvious  that the state-space  and  transfer 
function  approaches  should lead to the  same  answer: in fact a theorem 
of Brockett and Mesarovic [ I ]  to this effect is in error.) 

In  the  initial  part of the  paper  only left inverses are  considered. and 
for brevity the  word “inverse” will be  taken  to  mean “left inverse” except 
where a right inverse is explicitly referred  to. 

11. ISVERTIBILITY CRITERIA 

The systems  to  be  considered in this paper  are  linear  and time-in- 
variant. with state  equations 

= A x  + Bu, x ( 0 )  given 

y =  Cx+ Du (1 )  

where x is an n-vector. u is an m-vector. and y is a p-vector. All vectors 
and  matrices  have  elements in some field F. which for  the  bulk of the 
paper will be  taken  to  be  the real field. For technical  reasons  it will be 
assumed  that  elements of u and y are  at least n times differentiable, or 
alternatively  that  the  input and  output  spaces  are closed under dif- 
ferentiation  (for example. if step  functions  are allowed as admissible 
inputs,  then  one  must  also allow delta  functions.)  Apart  from this 
consideration  the  choice of signal spaces is of no great  consequence in 
what follows. 

Dqfinirion: Let u1 and u2 be  any two inputs  to  the system (1). and let 
yl  and y 2  be  the  corresponding  outputs  [for the same x(O)]. The system 
will be  said to be  (left)  invertible if y , ( r ) = y 2 ( r )  for  all t > O  implies that 
u , ( t ) = u 2 ( t )  for all t > O .  

If the system is invertible. then  it  turns out to be possible to construct 
an “inverse system” whose input is the  output of ( I )  and whose output is 
u. As  might  be expected from  the  corresponding  frequency-domain 
inversion problem.  the  (nonunique) inverse system is a linear system 
possibly containing  some  differentiators. (The use of differentiators is 
unfortunately  unavoidable.  except in some special cases.) 

It is desirable. of course. that  the inverse system be  asymptotically 
stable.  The  existence of stable inverses is the  subject of Theorem 2 of this 
paper. 

In the sequel  it will be  assumed  that ( I )  is completely  controllable  and 
completely observable [23]. This  assumption is invoked  more  for clarity 
of exposition than  for  any  other  reason, since the  changes  required  for 
the  more general case are relatively minor. 

In  the  remainder of this paper. we will be  concerned with the  rank 
properties of the  matrix 
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by Wolovich 1241 and Davison and  Wang [30], [31] to define  “transmis- 
sion  zeros“  for a linear  multivariable  system.  Using  the  results in [21]. 
[24]. and [29]-[31], it is possible to establish  numerous connections 
between  the  present  results and transfer-function approaches  to inver- 
sion. 

Our  first  result is as follows. 
Theorem I: The system (1)  is invertible if and only if rank :M (X) = n + 

Proof of :Vecessiry: Supposing that  rankM(h) < n + m for  all  real X, 
i t  is possible to choose a set {X,.i= 1:. . ./)-where I can be as large as 
desired-of distinct  scalars  such that 

m for  some  real X. 

for vectors x,. u,. at least  one of which is nonzero. From this  observation 
it  is possible to construct a  control of the  form 

I 

I =  I 

(for  some set of scalars ai) which leads to  an identically  zero output 
when x ( O ) = O .  A  more complete  proof  may  be  found in [28]. V G V  

The sufficiency of the condition  rank M (X) = n + m, for  some  real X. 
for the  existence of an inverse wil l  be shown in Section I11 where an 
inverse will actually  be  constructed.  Before  proceeding,  however, it is of 
interest to note  the  following  stability  result. 

Theorem 2: System (1) possesses an asymptotically stable left  inverse 
if and only if rank M (X) = n + m for all  complex X in the  half-plane 
Re(X) > 0. 

Proof of Necessiry: Let X, be such that the  columns of :M(X,,) are  not 
linearly independent.  Then there exist (possibly  complex)  vectors x,, and 
uo such  that 

One  can then  argue, as in Theorem 1, that there  exists a  control of the 
form 

u ( t )  = Re( e’%,) 

which  produces  zero output. (However,  some  care is needed  here in 
treating  initial  conditions. For more  complete  details,  see [28].) It follows 
that  the inverse system-if it exists at all-must.  have a zero-input 
response of the above form,  for  some  initial state. If Re(ho) >O, this 
means that  there cannot exist any stable  inverse  system. VGC 

Again.  the  proof of sufficiency will be deferred  until  Section 111. 
Recall that x ( 0 )  was assumed to be available when constructing the 

inverse  system. In the  following  section  it will be found  that, in general, 
some but  not  all  components of x(0)  will be needed. In particular, we 
say that (1) is inwrtible with unknown inirial stare if the  inverse can be 
constructed with no knowledge of x(0 ) .  (This  concept has been  explored 
in some detail by Bengtsson [ 171.) 

Theorem 3: System (1) is invertible with unknown  initial state if and 
only if rank A4 (X) = n + m for  all  complex X. 

Proof sf ,%‘ecessiry: As in Theorem 2, let &. uo#O, and x. be such 
that 

Then  an almost  identical  argument to  that of Theorem 2 shows  that  the 
system  response  for x ( 0 )  = Re ( x d  and 

u ( I )  = Re (eA%,) 

is indistinguishable  from that  for x(0)  = O  and u ( t )  EO, t > 0. V P V  

111. CONSTRCCTION OF THE INVERSE 

The sufficiency  proof of Theorems 1-3 proceeds by construction of 

scribed,  followed by a proof that the  algorithm  terminates in the desired 
manner whenever  the  hypotheses of Theorems 1-3 are satisfied. 

It will prove  convenient in the  subsequent development to consider  the 
inversion of the  slightly  more  general  system 

x = A x + B u + o  
y =  C x +  Du 

where c is a  known  input.  The  introduction of c is primarily for 
consistency of notation,  and in most  cases c(1) will be zero for all t .  

The algorithm  proceeds by a sequence of reductions. If the system (2) 
initially has n states andp  outputs.  then in one step of the algorithm the 
measurements y (and u)  are  processed to  produce  a new system  with 
i < n states and ,i < p outputs.  At least one of these  inequalities is strict, 
so that the  inversion  problem  reduces to  that for a smaller  system. This 
process is repeated  until  the new D matrix  has rank  equal  to m, the 
number of inputs.  At that point, of course.  the  inversion  problem 
becomes  straightforward.’ 

Assume  initially that rank D < p .  (The  implications of the case rankD 
= p  will be  discussed  later.) Then the  algorithm  proceeds as follows. 

A .  Outpur Basis Change 

Since D has  rankr < p ,  there  exists a nonsingular p x p  matrix SI such 
that 

SI,=[ :] L - r  
where the r X  m matrix Do has linearly independent rows. Partition SIC 
as 

where C, is r X n. The matrix C, has  dimensions ( p  - r )  X n; let  its  rank 
be denoted by q.  

Now  let a nonsingular ( p  - r )  X ( p  - r )  matrix S,  be defined  such that 

c n -  

where  the q X n matrix cz has  linearly independent rows.  Finally  define 
the  product 

and  the transformation 

;= sv. 

Let  be  partitioned  in  the  obvious way as [y’,y&,]’, then the output 
equation  has  the form 

[it]=[ ;:Ix+[ ; I u .  
The  components of y 3  clearly  carry no information, and  may be  dis- 
carded.  The overall  effect of this  step is depicted in Fig. 1. 

B. State-Space Basis Change 

Because  the  rows of e, are linearly independent, 6, has rank q and so 
there exists an n X n nonsingular  matrix T such that 

n L 4  $ 

the  inverse  system.  In  this  section an inversion  algorithm will be de- (where  the  unit  matrix has dimension 4 x 4 ) .  With  the new choice of 
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t 
y3 (discarded) 

Fig. I 

state vector x = Tx,  the  state  equations  become 

I=A?+BU+C 
p= cx+ Du - -  

where A = T A T - ' ,  B=TB,  C=CT-'. and E as earlier  defined. The 
vector is of course given by C =  Tc. With the obvious  partitioning of all 
vectors and matrices,  the  equations  may  be  written as 

[ :1] J 3  = [ c.2] [ ::I + [ 1].. 
Note in particular that yl= x*. The only  effect  this step  has  on the actual 
synthesis is via the  transformation of c, together of course with a 
transformation of the  initial conditions  for x. Note. however. that x2(0) 
is not needed.  since  it is available  directly  from  the output vector y,. 
C. Reduction of State-Space Dimension 

YZ 

Y ry&J + I L - A 

"2 - I r 

Flg. 2 

matrix  such  that ED = I [of course, E = D ~' is the only possibility  in 
case I)] we have 

Finally,  define the  transformations ~ y ^ =  EC.;+U 

r^ l  = Y l -  C12Yz 

Y^Z=YZ-A22YZ-C2 

" = " l + A , 2 ) ' 2  U =  - EC.?+ E i .  

and  the inverse  system is given by 
. - " .  

. ; = ( A - B E c ) . ; + B E . + ~  

and  This should of course  be concatenated with the  partial realizations of 

It remains to be  shown  that an inverse will be found whenever one 
The steps implied by steps B and c are shown  in F , ~ .  2. exists. This is not  immediate  from  the construction, since  because of the 

presence of u it is not clear that  the  transformations of step C are 
reversable. However. we know  from  Theorem 1 that  an inverse  exists 

x = XI. 
Figs. 1 and 2. 

The new state  equations  are 

only if rank M (X) = n + rn for at least one value of X. A simple  calcula- 
tion  then  shows that 

where 

This completes one cycle of the algorithm. The new state vector has 
dimension i = n - q, and  the new output vector has dimension j = r +  q 
< p .  

At  this po-int there  are  four possibilities. 
1) Rank D = m=d. That is. D is square  and nonsingular, and we are 

2) Rankd  < m < j. In this case  a  further cycle of the algorithm is 

3) j < m. In  this case  further cycles of the algorithm can never  lead to 
case 1) and  the algorithm will fail to find an inverse. 

4) Rank D = m <p .̂ It is possible to stop  at this point, or to carry out  a 
further cycle of the  algorithm.  [Ultimately,  this will lead to  the stopping 
condition I).] 

In  either case 1) or 4). an inverse is immediate.  Letting E be any 

done. 

called  for. 

- - -  
with A ,  B? C, and D defined as in step C. This implies that p̂ < m is 
impossible  (recall that D is j X m). so that the  algorithm will always  find 
an inverse  when one exists. This incidentally  completes the proof of 
Theorem 1. 

The sufficiency part of Theorem 2 follows  from the observation that 
values-of X for which  rank M (A) < R + m are precisely  those X for  which 
rapk (A) <-i + m. If D is square, these are of course the eigenvalues of 
( A  - BD -IC) which are in turn  the poles of-theinyerse system. If D is 
not square, then some of the eigenvalues of ( A  - B E C )  will depend  on E.  
Relating  this  back to  the  stopping  conditions  for the  inversion  algorithm, 
it is found that 

1) if the  algorithm is halted  as soon as possible, i.e., as soon as 
rank D = m. then D might not be square  and there  is no guarantee of 
stability; 

2) if the  algorithm is carried out for as many  cycles as possible, i.e., 
rank D =j is used as the stopping  condition. then D will be square  and  a 
stable inverse wil l  be  found whenever the conditions of Theorem 2 are 
satisfied. 
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Note  also  that there is a tradeoff  between the  number of differentia- 
tors used and the  dynamical order  (as measured by the  number of 
integrations) of the inverse  system. For each state eliminated, a new 
differentiator is introduced. 

Finally, the proof of Theorem  3  may  be completed by observing  that if 
M(X)  has full rank  for all X, then the inversion  algorithm will eliminate 
every state  and the  inverse will consist  only of differentiators.  An 
essentially  identical  result, obtained, however, by different  arguments, 
was  obtained by Bengtsson [17]. 

IV. RIGHT INVERSES 

The two  definitions below are two “natural”  ways in which one might 
define right  invertibility. The first is equivalent,  for  linear  time-invariant 
systems. to  that given by Brockett and Mesarovib [ I ]  or that of Doty  and 
Frank [ 151. The second appears to be new. 

Definirion: System (1) is funcrionally reproducible if,  for  any y,,d.) 
defined on [O. co) and  any ~ ( 0 ) .  there  exists a u ( . )  such thaty(r)=y,,Ar) 
for all f E [O. 30). 

Definition; System ( I )  is right  incertible if. for any y,,X.) defined  on 
[0, co). there  exists a u (  . )  and  a choice of x(0)  such thaty(t)=y,,&r) for 
all t E [0, co). 

The only  difference  between  the  definitions is in the way the  initial 
state is handled.  (In  both definitionsy,,, is  of course  constrained to have 
the differentiability  properties  imposed in Section 11.) It turns out, 
though, that our system is functionally  reproducible  only if rank(D)=p; 
for  all other cases,  it is impossible to specify x ( 0 )  and y(0) indepen- 
dently. We  choose  therefore to work  from the second  definition. 

The  conditions for  right  invertibility will now be stated.  In the  state- 
ment of Theorem 4 a right  inverse will be  said to be “stable” if it is 
asymptotically  stable in the  sense of Lyapunov. I t  will be  said to be a 
“right  inverse with unknown  initial  state’’ if the initial state of the 
original  system ( I )  is irrelevant in constructing  the  inverse. 

Theorem 4: System (1) possesses a right  inverse if and only if 

rankM (A) = n + p  

for  some  real A. It possesses a  stable right  inverse if and only if the 
condition is satisfied  for  all  complex X in Re(A) a 0. and  a right  inverse 
with  unknown  initial  state if and only if the  condition  holds  for all 
complex X. 

A proof may be found in [28]. The  actual construction of the  right 
inverse  proceeds via a trivial  modification of the  algorithm of Section 
111. 

Finally, we can establish a  connection between  the  present  invertibility 
definitions and  a  frequencydomain formulation of the problem. 

Theorem 5: The system (1) is left  (right)  invertible if and only if the 
transfer function  matrix 

z (~ )=D+c(s I -A) - ’B  

has linearly independent  columns (rows)  for all but  a finite number of 
complex s. 

Prmfi Following Dorato IS]  we have  the identity 

Combining this  with Theorems 1 and 4 the result  follows  immediately. 
vvv 

V. FINITE STATE SYSTEMS 

The  arguments of the preceding  sections carry over almost without 
change  to cover the inversion of the discrete-time  system 

x ( k + l ) = A x ( k ) + B u ( k )  

y ( k ) = C x ( k ) + D u ( k ) .  (3) 

The only  changes  required are substitution of X everywhere for eh, and 
consequently I X l >  1 for  Re@) > 0 in the stability  criteria. The change 

required  in  the  inversion  algorithm is the  substitution of “unit  predic- 
tors” for differentiators;  this  makes the inverse  noncausal,  but with the 
obvious change  to  the time  scale a causal  inverse  with  delay is produced. 

More  generally,  many of the  arguments remain  valid when all  matrices 
and vectors have elements in an  arbitrary field F. An important special 
case occurs  when F is a finite  field,  since  then (3) represent a class of 
linear  finite  automata.  The problem of inverting  such a system is 
equivalent to  the problem of decoding a discrete  convolutional code [3], 
[XI, [261. 

Note  that while the  inversion  algorithm  applies  regardless of the 
nature of the  field F, Theorems 1-4 make use of complex  numbers and 
hence are  not valid  generally (apart from  their  intrinsic  interest,  these 
theorems are needed to  guarantee  that, for  example.  the  inversion 
algorithm will find a stable  inverse  whenever one exists).  When F is a 
finite  field,  this situation may be rectified as follows. 

Recalling  that n is the  dimension of the state vector, let F, be a finite 
extension of F containing the  roots of all nth degree  polynomials (that is. 
Fe is a field containing all of the  elements of F together  perhaps \vith 
some  other  elements. The existence of such  extensions is  well known 
[27]). Of course, F, is a finite  field;  more  importantly.  it is a vector 
space  over F [27]. That is, there  exists a set S =  {e,)-not. in general. 
unique--of  elements of F, such that every  element a of F, can be written 
in the form 

a = a,e, 

with  coefficients a, in F. There is  of course no loss of generality in 
choosing e, = 1. 

Before  proceeding  further. we need to define  stability  for a finite-state 
system. 

Definirion; The finite-state  system ( 5 )  is stable if and only if whenever 
u ( k ) = O  for  all k.  and for any x(0). there  exists a k ,  a 0 such  that 
x ( k ) = O  for  all k > k , .  

I t  is readily  verified  from  this  definition (and assuming  complete 
controllability and observability) that the following five statements are 
equivalent. 

I )  The system (3) is stable. 
2) For some k ,  > 0, A k D = O .  
3) There exists a feedback-free  realization of (3). 
4) If u ( k )  is nonzero for only a finite  number of k ,  then so isy(k).  
5) det(A-AI) is nonzero  for  all X # O  in F,. 
Statements I )  and 4) are of greatest  interest to coding theorists-in 

particular. 4) is a  statement  about finite  error  propagation-while 5 )  is 
more useful in the  present context.  For  further details,  see [3], [5], [16]. 
[25], and [26]. Of course,  the  issue  here is not so much  the  stability of ( 5 )  
as  the stability of its  inverse.  This  only  requires that A be replaced  above 
by the appropriate matrix  determined by the inversion  algorithm. 

With  these  preliminaries  over, we have  the  following  result. 
Theorem 6: Suppose  all  vectors and matrices in (3)  have components 

in a finite  field F. Let F, be the extension  field defined earlier. Then the 
system  (3) is left  (right)  invertible if and only if 

has linearly independent  columns (rows) for at least one X €  F. It  has  a 
stable left  (right)  inverse if and only if M ( A )  has  linearly independent 
columns (rows) for all A Z O  in F,, and is left  (right)  invertible with 
unknown initial state if and only if these conditions hold for all X €  F,. 

Prmfi With  the  basis  set S defined as in the preamble to  the 
theorem,  let Ps( .) be the projection of F, onto F defined via 

Then the  proofs of Theorems 1 4  are valid in the  present  context if Re(.) 
is  replaced  everywhere by P , ( . )  and  eh is  replaced  everywhere by hk .  

vvv  
Of course, the conditions of Theorem  6  involve  operations  over F, and 

so might not  be easy tu check.  However,  this  point is unimportant in 
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view of the  obvious  coroilary: the system (3) has  an inverse with the 
desired  properties if and only if the inversion algorithm  finds  such  an 
inverse. 

VI. CONCLUSIOKS 

A new inversion algorithm  has  been  presented for the  left or tight 
inversion of a linear system. It is computationally efficient since  at  each 
step  the  dimensionality of the  problem is reduced,  and  because  the 
operations  within  each  step consist simply of elementary row or column 
operations on a set of matrices.  At  the  same  time new invertibility 
criteria  have  been  presented which serve both to justify  the algorithm 
and  to delineate  in a simple way the class of invertible  and stably 
invertible systems. 

Applications  have  been  mentioned  only briefly. but  numerous  applica- 
tions  may  be  found  in  the  references  cited.  These include. but  are  not 
restricted  to, solutions to decoupling  problems, new approaches  to  the 
design of controllers,  and  decoding of convolutional  codes. 
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Controllability  of a Class of Discrete  Time  Bilinear 
Systems 

M. E. EVAh’S ASD D. N. P. MURTHY. YEXlBER.  IEEE 

Abstract-In this paper  the controllability of a class of discrete time 
bilinear systems is discussed. Necessary and sufficient conditions for 
complete controllability are derived. In addition a complete characteriza- 
tion of the controllable regions of this class of systems.  when not com- 
pletely controllable. is made. 

1. INTRODLCTIOS 

The study of bilinear systems has received considerable  attention in 
the last few years.  Such systems have been successfully used to  model a 
variety of physical phenomena  for which linear  model  representation has 
proved  inadequate [ I]-[3]. 

In this paper we study  the  controllabilit~ of homogeneous discrete 
time bilinear systems 

. y k + , = [ A  + u ~ E ~ . u , .  k = O .  I:.. (1)  

with scalar  control  sequence ( uk. k=O. 1.. . . ). 
In [4] and [5] necessary (but  not  sufficient)  conditions  and sufficient 

(but  not  necessap)  conditions for the  controllability of ( I )  have  been 
given when the  matrices A and E are n X n constant real matrices and B 
has  rank 1. We shall completely resolve the issue for this problem by 
giving (Theorem 2) an easily checked  set of conditions which are  both 
necessar). and sufficient for the controllability of ( I )  (rank B =  1) .  An 
example  from [4] is discussed to  illustrate our results. 

In  addition, we examine the structure of systems which are  not 
completely  controllable and give a complete  characterization of the 
regions of controllability. 

Results for  controllability with bounded  controls  can  be  found  in [7]. 

11. HOhlOGEKEOUS BILINEAR SYSTEM 

It  has been shown [4] that we need consider  nonsingular A only. Since 
rank E = 1 and A is nonsingular.  it follows that  rank A ‘ E  = 1 and  hence 

A-’E=ch’ ( 2 )  

where c and h are  constant n-vectors of appropriate  dimensions.  It is 
readily verified that for an  arbitrary  number of steps r ,  from  an initial 
state xg. .u, can  be expressed as 

r -  I 

x,=A‘ n [ l + D J l . Y ,  (3) 
j=O 

wrhere 
r -  1 n ~I+DJ1=~I+D,~,l~l+D,~,l.”~I+D,l 
j= O  

with 

D,=uJA-JchTAJ. 

111. A MODIFIED SYSTEM (THE COYPASIOK SYSTEM) 

Consider  the system 
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