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THE BRUNE SYNTHESIS IN STATE-SPACE TERMS* 

B. D. 0. ANDERSON AND P. J. MOYLAN 

Department of Electrical Engineering, University of Newcastle, New South Wales 2340, Australia 

SUMMARY 

A state-space interpretation of the one-port Brune synthesis of a rational positive real function is presented. A natural 
generalization then leads to a multiport synthesis for rational positive real matrices. 

INTRODUCTION 

The development of synthesis procedures for passing from a prescribed rational positive real function or 
matrix to a linear lumped network of passive components possessing the prescribed quantity as its impedance 
has been one of the major problems confronting network theorists in the past. One of the earliest such syn- 
thesis procedures is the Brune synthesis, see Reference 1 and for more recent treatments, References 2 and 3. 

As presented in References 1-3, the synthesis is of positive real functions, rather than positive real matrices. 
Multiport generalizations may also be Reference 9 by Newcomb, besides referencing earlier 
technical reports by the same author, provides comparisons of the various multiport approaches. 

Our goal here is twofold. First, we aim to present the Brune cycle in state-space terms. As we show here, 
carrying out a Brune cycle is equivalent to the problem of finding a state-space description of an impedance 
in a special co-ordinate basis. In this special co-ordinate basis, a certain matrix appearing in the so-called 
Positive Real the fundamental result on positive realness in state-space terms-takes on a 
special form which enables its part identification. Since, as argued in Reference 10, synthesis in some ways is 
equivalent to the complete identification of this matrix, it becomes reasonable that part identification 
corresponds to part synthesis. 

Our second aim is to illustrate how the multiport case is a natural extension of the single port case when 
viewed in state-space terms-perhaps more so than when a classical viewpoint is taken. Further, and as one 
would hope, in synthesizing a symmetric impedance matrix, gyrators are automatically excluded. 

The layout of the paper is as follows. In section 2 we analyse, as opposed to synthesize, the structure 
resulting from a Brune cycle, to exhibit the sort of state-space equations one needs in order to execute a 
synthesis step. Section 3 contains our fundamental lemma, explaining how one can change the co-ordinate 
basis to get the right equations (The proof has common roots with that used by Yakubovic in a proof of the 
Positive Real Lemma’ ’.) The section ‘One-Port Brune Synthesis’ explains the one-port synthesis, and the 
section ‘Multiport Brune Synthesis’ with the aid of a generalization of the fundamental lemma, discusses 
the multiport problem. 

We caution the reader that in the course of the paper, some familiarity with the Brune synthesis is expected, 
including some familiarity with the properties of positive real functions and matrices. References 2, 3,9 will 
provide adequate background. Further, some familiarity with state-variable descriptions of networks is also 
expected, see e.g. Reference 10. 

PRELIMINARY ANALYSIS 

We shall study the arrangement of Figure 1, and show how a state-space description of the network N ,  
is related to a state-space description of N .  This will enable presentation of the fundamental lemma relevant 
to the synthesis problem in the next section. 

*Work supported by the Australian Research Grants Committee. 
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Figure 1. A network N comprising a Brune section and a terminating network N ,  

Suppose that N ,  is described by state-space equations 

X I  = F,x, +G,u, y,  = H;x, + J,u, (1) 

Here, x 1  is not necessarily a vector of capacitor voltages and inductor currents. It may simply be the state- 
vector of a state-variable equation set derived from the impedance function of N ,  , and no more. 

With quantities as defined in Figure 1, it is evident that a state vector for N could be taken to be 
[x i  x2  = JCv, x 3  = J L i  J'. With these definitions, the state-variable equations of N turn out after some 
manipulation to be 

0 

0 

n -~ 
J L C  

Lx3J 

Several important points should be noted. First, suppose that x = F,x+G,u, y = HAx+ Ju is a state- 
space set of equations for N ,  in the sense that z(s) = J + HJsI - Fa)- 'G, is the impedance function of N .  
Suppose also that by change of co-ordinate basis, these equations could be carried into the form (2), for 
some F,, G I ,  H, ,  J , ,  n, L and C .  Then the problem of synthesizing N becomes one of synthesizing N ,  with 
N ,  defined by x, = F,x, +G,u, y = H;x+J,u. 

Of course, it may not be true that an arbitrary state-variable realization can be converted to one of the 
form (2) and this brings us to our next point : If (2) holds, and if z(s) is the impedance function linking u and y 
in (2), then z( jw,) +z( - j q J  = 0 for wo = J(n/LC). (Those familiar with the Brune synthesis will recognize 
this property immediately. It may also be proved directly from (2).) In relation to the first point made, this 
means that before one can think of transforming an arbitrary state-variable equation set to one of the form 
(2), it must be the case that for some real wo, z(jwo)+z(--jwo) = 0. 

The third point to be made is tied up with the so-called Positive Real Lemma. '0-13 If (F, G, H, J) is a 
quadruple of matrices defining a minimal state-variable realization of a square rn x m real rational matrix 
Z(s) with Z(o0) < 00, the Lemma states that Z(s) is positive real if and only if there exists a positive definite P 
and matrices M and V such that 

PF+F'P = -MM' PG = H-MV V'V = J+J'  (3) 
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Almost all state-variable passive synthesis techniques for passing from a prescribed state-variable realization 
of a positive real Z(s) to a network synthesizing it have as their key step the determination of a matrix P 
satisfying (3). Turning to our particular problem, suppose P,, M, and V, are matrices for which P,F, + 
FIPl = -M,M; and so on. Then with F, G, H and J defined as the global matrices appearing in (2), it is not 
hard to check that 

V = nV, nvll P=PIO[o 1 0  I] M = [ M ' ,  0 -__ JL (41 

causes satisfaction of (3). In other words, knowledge of a solution of the Positive Real Lemma equation 
associated with the realization (F,, G , ,  H, ,  J l f  of N ,  yields knowledge of a solution of the equation associ- 
ated with the realization (F, G, H, J} of N .  

One can turn this idea round as follows: Suppose a positive real Z(s) has a minimal realization {F, G, H, J} 
of the form of (2); then the task of finding a P satisfying (3) is reduced. Part of P is identifiable immediately 
as a 2 x 2 identity matrix. The remaining part of P is defined as any positive definite P, causing satisfaction of 
(3) with the subscript 1 on every matrix. Put another way, determination of a co-ordinate basis change 
taking an arbitrary realization (Fa, G,,H,, J} of Z(s) to the form (2) partly identifies P at the same time, 
and in this sense can be thought of as moving towards a solution of the synthesis problem. 

In a sense, the decomposition of P follows on physical grounds. As discussed in Reference 10, the quadratic 
form 3x'Px can be thought of as a stored energy for the network. The definitions of xt and x3 and study of 
Figure 1 then show that if the stored energy of N ,  is ~x;P1xl ,  that of N will be f[x;P,x, +x;x2 +x;x3], i.e. 
+x'Px where PI and P are related as in (4). 

THE FUNDAMENTAL LEMMA 

In this section we shall show that the condition z(jw,) + z( - jw,) = 0, which is necessary for the existence of a 
state-variable description of the type (2), is also sufficient for there to be such a description. This will enable 
statement of the Brune synthesis in the next section. 

Lemma 

One-port case. Let {F,, G,, Ha, J} be a minimal realization of a positive real impedance function z(s) 
such that z(jwo) + z( -ju,) = 0 for some real finite and nonzero wo with jw, not an eigenvalue of F,. Suppose 
also that F, is of dimension greater than 1 x 1. Then there exists a co-ordinate basis change matrix T such 
that with F = TF,T-', etc., the quadruple {F, G, H, J} has the form as shown in (2). Further, T may be 
computed from {Fa, G,, H,, J} and wo in closed-form. 

Outline proof. A sequence of basis change matrices can be defined as follows : 

(i) Let T, be any nonsingular matrix for which the last two columns of T,-' are (w;I+F,Z)-'G, and 

(ii) Setting F, = T,F,T,- ' and H, = (Ti ')'Ha, compute 
-F,(o~I+F:)-~G,; 

Then set 

(iii) Set F, = TbFbT; and H, = ( T i  ')'Hb. Then it turns out that 
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for nonzero real scalars a and p. Define 

Finally, let T = T,TbTa and define F = TF,T-', G = TG, and H = (T-')'H,. Then it turns out that 
F, G, H and J are of the required form. The proof of all the above assertions rests on straightforward applica- 
tions of the Positive Real Lemma. 

ONE-PORT BRUNE SYNTHESIS 

With the fundamental lemma of the previous section in hand, we can now describe how a1Brune synthesis 
of a positive real z(s) is carried out. 

As usual, the synthesis is carried out via a sequence of cycles. The first task in each cycle is, again as usual, 
to remove jw-axis poles and zeros via the 'Foster preamble' to the Brune synthesis, see e.g. References 2 
and 3. The impedance remaining to be synthesized after the preamble, call it z(s), is then finite and nonzero 
a t s =  00. 

The next step of any one Brune cycle is to find the value of real w where Re [z(jw)] takes its minimum ; 
if the minimizing w is 0 or 00, the situation is easily dealt with, and will not be discussed. 

If the minimizing w is nonzero and finite, say w = wo,  set ro = Re [z( joo)] ; then 2(s) = z(s) - ro is positive 
real, has i?(jwo)+ 2( -jwo) = 0, and a synthesis of z(s) follows from series connections of a resistor ro and a 
synthesis of 2(s). Now the fundamental lemma can be applied to a minimal state-variable realization of 2(s), 
to complete one Brune cycle. 

As usual, each Brune cycle reduces the degree of the impedance remaining to be synthesized at the end of the 
cycle, and so the process eventually terminates. 

The hard part is of course determination of the w for which Re [z(jo)] is minimum. Below, we suggest 
three techniques which may be used for this step. 

(i) Forming Re [z(jw)] as a ratio of two even polynomials in w, standard minimization techniques may be 
used to locate the minimum. (This would normally be done by locating the zeros of a/aw Re [~(jw)].) Con- 
ceptually, this technique is the simplest, but it may be numerically ill-conditioned because of repeated station- 
ary points in Re [~(jw)]. 

(ii) As shown in Reference 10, the Riccati equation 

P = P(F - GR- 'H') + (F - HR- 'G')P - PGR- 'G'P + HR- 'H' ( 5 )  

with initial condition P(0) = 0 has a finite escape time if and only if Z(s) = $R + H'(s1- F)- 'G is not positive 
real. Now if z(s) = J+H(sI-F)-'G, one can solve (5) for various real positive scalars R to find that R 
which separates the solutions with finite escape time from those without. Then it will be true that 2(jw) = 
z(jw) - (J -$R) will have zero real part for some w, which may then be determined. 

(iii) Again with z(s) = J + H(s1- F)- 'G, consider the matrix 

F-GR-'H' -GR-'G ] 
HR-IH' - F + H R - ' G  

X(R) = 

It is not hard to show that the eigenvalues of X(R) are the zeros of Z(s) + Z( - s), where Z(s) = $R + H(s1- F)- 'G. 
If R varies from some large positive number towards zero, X(R) will initially have no pure imaginary eigen- 
values of even order, but such eigenvalues will appear as R is reduced. Suppose that an eigenvalue jw, first 
appears for R = fi. Then it is easily seen that min, Re [z(jw)] = J - f f i ,  with the minimum actually 
occurring at w = wo. 
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MULTIPORT BRUNE SYNTHESIS 

In this section, the earlier ideas are applied to the multiport problem. First, consider the arrangement depicted 
in Figure 2; several comments are in order. Now w is a multiport network. One of the port currents is uA and 
the remainder form a vector uB. A type of Brune section when cascaded with a network N ,  yields N. The 
section varies from that of Figure 1 by the inclusion of the transformers with turn-ratios 1 : vk. Though only 
one transformer is shown, a number are to be understood as being used. The primaries are all in parallel. 
For the secondaries, it is understood that the terminals marked k are interconnected, as are the terminals 
marked k', and the kth entry of uB defines the current flowing through k - k. The vector [v, v2 . . . 3' will be 
denoted by v. 

1 - - - - - - - - - - - - - - - - - - - - - - - 

Network N, 

il =F,x,+G,,u,, 

+GI 8"8 

L?=Y*Xl 'J ldd" ,A  

' J 4 A 8 u 8  

18 I I 8 A  Id YI8=H' x +3 u 

'J1 88 "8 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- - - - - - - - - - .-I 
\---- 

L - - - - - - - - 
Network r'i 

Figure 2. A network showing the main modification in the Brune section 

By inspection, it is found that m has state equations 

n C I A  -___ 0 

n 
O JLC 1 

n 

J L C  JL 
1-n n2J,,, 

~ -__ 
J C  JL 

JL J= 

n H I A  

- - 
V n J I B A  H;B - -_ 

n G I A  r 
x1- 

x2 

3. 

Now consider the arrangement of Figure 3. The gyrator shown in the figure is shorthand for a number of 
gyrators. One side of each gyrator appears in one and only one of the input lines of the 'B set' of ports; the 
other sides of all the gyrators are connected in series, in the input line of port A. The effect is that 

YB - 48 = Y ' l A  

Y A - Y A  = -YtuB 
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Network N 

Figure 3. The network N as a series connection of gyrators and the network ,V of Figure 2. Together, Figures 2 and 3 show the Brune 
section 

where y is the vector of gyrator impedances. The state-space equations of N differ but little from those of 
N. Equation (6) is unaltered, while (7) is replaced by 

1-n n2J,,, 

+ 

The reader should now appreciate that if, given an arbitrary minimal realization of positive impedance 
matrix Z(s), say {F,, G,,H,, J}, we can find a co-ordinate basis transformation giving a new realization of 
the form in (6) and (8), then, in effect, a Brune cycle can be completed. The synthesis problem is then reduced 
to one of synthesizing the impedance matrix with realization {F , ,Gl ,H, ,  J1}, where G, = [G,, G,,], etc. 

As in the one-port case, such a transformation cannot necessarily be found. This is because (6) and (8) 
imply that Zll(joo)+Zll(-joo) = 0 where wo = J(n/LC), and Zll(s) is the 1-1 entry of Z(s). The content 
of the Fundamental Lemma is that if this condition holds, then one can construct the transformation. 

In presenting the Lemma, we shall rule out slightly more Z(s) than in the one-port case. As before, we shall 
require F, to have dimension greater than I x 1 and no eigenvalue at jo, (If F, is 1 x I, then synthesis is 
easy and does not need a Brune section. If F, has an eigenvalue at jo, extraction of a multiport Foster 
Section will eliminate it9.) We shall also suppose F, is nonsingular (a zero eigenvalue can be removed, again 
through extraction of a Foster section). Finally, we shall rule out the possibility of having 

for some real constant vector r. If this were the case, synthesis of Z(s) would of course follow easily from syn- 
thesis of Z,,(s). 

Lemma 

Multiport case. Let {F,,G,,H,, J} be a minimal realization of a positive real impedance matrix Z(s) 
such that Zll(joo)+Zl~(-joo) = 0 for some finite and nonzero 0,. Suppose that F, is of dimension 
greater than 1 x 1, is nonsingular, andjw, is not an eigenvalue. Suppose also that Z(s) does not have the form 
shown in (9). Then there exists a co-ordinate basis change matrix T, computable from {Fa, G,, H,, J} and oo 
in closed form, such that with F = TF,T-', etc., the state-space equations x = Fx+Gu, y = H'x+ Ju 
have the form depicted in (6) and (8). 
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Outline prooft: Let e, be a vector of all zeros, except for 1 in the last entry. Replacing G and H by Gel 
and He,,  apply the construction for the one-port case. Then F, G, H and J turn out to be precisely of the 
required form. The computations are identical to those for the one-port case ; their justification is slightly 
different, but still relies solely on the Positive Real Lemma. 

What now does the full Brune synthesis procedure involve? We refer the reader to Reference 9 for details. 
Each cycle commences with a multiport Foster preamble. Second, one carries out a resistor extraction at one 
port, and follows this with a transformer extraction. By selecting the resistance and transformer appropri- 
ately, the impedance remaining for synthesis has 1 - 1 term with a real part of zero at s = jo, for some 
real 0,. If w, is nonzero and finite, the preceding analysis applies, while if oo is zero or infinite, straight- 
forward modifications of the one-port case again apply. 

The reader will have observed the occurrence of gyrators in the section removed in the basic cycle. The 
vector of gyration impedances is y, and appears in equation (8). One might well ask whether these gyrators 
are essential if the original impedance Z(s) is symmetric. The answer is no. In fact, with Z,&) and Z,,(s)  
as defined in (9), equating of Z12(jcoo) and Zhl(jwo) shows that y = 0. In other words, symmetry of Z(s) 
[in fact, symmetry only of Z(jw,)] implies that no gyrators will appear in the section extracted. 

CONCLUSIONS 

We have described the one-port Brune synthesis using state-space ideas, and then exhibited a multiport 
extension which is a natural and fairly straightforward generalization of the one-port case. Further, the 
generalization handles symmetric and nonsymmetric Z(s) with equal ease, ensuring in the symmetric case 
that no gyrators occur in the section removed. 
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