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Implications of Passivity in a Class of

Nonlinear Systems

PETER J. MOYLAN, MEMBER, IEEE

Abstract—For a broad class of nonlinear systems, a connection is
established between the input-output property of passivity and a
set of constraints on the state equations of the system. These con-
straints are then interpreted in terms of the stored energy and
dissipation of a passive system. Applications are given in two
problems of optimal control theory, and a generalized form of the
circle criterion is also derived.

1. INTRODUCTION

N electrical network theory, the distinction between

active and passive networks has long been considered
an important one. The distinction is simple; active net-
works may contain internal energy sources, whereas
passive networks—at least in principle—do not. Because
of the obvious physical implications of classifying net-~
works in this way, a large body of literature has grown
up on the subject of passive networks [1],[2].
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For more general control systems, the physical meaning
and implications of passivity are less clear. The usual
approach—and one that will be adopted in this paper—is
to proceed by analogy with the networks case and define
an ‘“input energy”’ for the system. Passivity is then
defined in terms of a nonnegativity condition on this input
energy.

One of the main motivations for studying passivity in
the control theory context has been its connection with
stability [3],[4]. An especially important result in this
area is the Kalman—Yakubovich-Popov lemma [5]}-[7] or
Positive Real Lemma, which was used in solving the well-
known stability problem of Lur’e [8]. In essence, this
lemma states that a transfer function is positive real if
and only if a certain set of matrix equations has a non-
negative definite solution. The connection between posi-
tive real functions and passive systems is, of course, well
known [9]. Generalizations of the positive real lemma are
now available which extend the results to positive real
matrices [5],[10], and in particular Anderson [11] has
obtained a solution to the multivariable version of the
problem of Lur’e. Applications of the positive real lemma
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also include spectral factorization [12], network synthesis
[21], and the solution of an inverse problem of linear
optimal control {13].

The main limitation of the positive real concept is that
it applies only to linear systems. Ifor nonlinecar systems,
the most promising approach to studying the properties of
passive systems appears to be that of Willems [14]. The
starting point in Willems’ theory is the definition of a
“dissipative” system in terms of an inequality involving,
in effect, the stored energy of the system. Passivity, as
defined in this paper, then appears as a special case of
dissipativeness.

The results of this paper lie somewhere between those
for linear systems and those for the extremely general class
of svstems studied by Willems. The principal restriction
imposed is that the state equations for the systems con-
sidered should involve the control vector only linearly.
(This condition is less restrictive than it might at first
appear to be. Balakrishnan [22] has shown that, under
very mild restrictions, there exists a choice of state
vector for almost any controllable finite-dimensional
system such that the control appears linearly in the state
equations.) By making this restriction, it turns out to be
possible to obtain results that are considerably more
explicit than have hitherto been available for nonlinear
systems. In fact, the central result could be interpreted as
a nonlinear version of the positive real lemma.

This result, given as Theorem 1 in Section 11, is the
cornerstone of the subsequent development; as with the
positive real lemma, it shows that a system is passive if
and only if there cxists a certain scalar function of the
state which is nonnegative. The remainder of Scetion II
is devoted to showing that this function has the propertics
of stored energy, thus arriving by a different route at
some of the results of [14].

In Sections ITTI-V the results of Section II are applied
to a class of inverse optimal control problems, a class of
singular control problems, and a nonlinear extension of
the Popov stability problem [8],[15]. All of these results
are believed to be new, although a restricted version of the
results of Section IIT has been reported in [16]. The
algorithm of Section IV is particularly interesting, in that
it achieves a partial solution of a singular optimal control
problem by methods which are equally applicable to non-
singular problems. It appears that these ideas could be
extended considerably, although the details still remain
to be worked out.

II. Ax ArgeEBRAaIC CONDITION FOR PASSIVITY

The systems to be studied in this paper are deseribed
by the equations

8
il

f@) + Gl)u
h(z) + J(@)u (n

Y
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where f(-) and A(-) are real vector functions of the state
veetor x, with f(0) = 0, 2(0) = 0, and G(-) and J(-) are
real matrix functions of x. In order to guarantec the
existence of solutions to the equations to be introduced
below, it will be assumed that f(-), G(-), A(:), and J(-) all
possess continuous derivatives of all orders, although
weaker conditions would probably suffice. The input
vector u and the output vector y have the same dimension,
so that J(x) is a square matrix. The system is assumed to
be completely controllable, in the sense that for any finite
states xo and xy, there exists a finite time #; and a square-
Integrable control «(f) defined on [0,{;] such that the state
can be driven from x(0) = x, to (%) = ;. In addition, a
form of local controllability is assumed; for any z, and
any z; in a suitably small open neighborhood of x, there
exists a choice of u(-) and £ as above with the additional
property that

! t
| fﬂ w (DY) dt] < ofllar — o))
for some continuous p(-) such that p(0) = 0.
The dynamical system (1) will be called passive if,
whenever () = 0 (for any {),

T
f 2u' Dy dt > 0 (2)
to
for all T > {, and all square-integrable «(f). (The multi-
plier 2 is simply a scaling factor which it will be con-
venient to use in the following equations.) The quantity
on the left-hand side of (2) will sometimes be called the
input energy.

An alternative formulation of condition (2) is given in
the following theorem.

Theorem 1: A necessary and sufficient condition for
system (1) to be passive is that there exist real functions
o(+), 1(+), and W(-), with ¢(z) continuous and with

) >0, forallz
and
$(0) =0
such that
Vio(@)f(x) = —U@)(=)
@' @Ve(x) = hix) — W D)lx)

J@) + J'@) = W (@)W (). ®3)

AMoreover, if J is a constant matrix, then W may be taken
to be constant.
Proof:
1) Sufficiency: Suppose ¢(-), I(-), and W(-) are
given such that (3) are satisfied. Then for any square-
integrable (), and any & and 7" > &, and any x(4),



MOYLAN PASSIVITY IN NONLINEAR SYSTEMS

f " ow () dt = f " ouh) + w0 + S @) &
to to

T
= j; [W'@ (@)Ve(z) + 2u'W'(@)l(z)
+ w' W ()W (z)u] dt

T
- f (V6@ [f@) + G@ul
+ 2 W @)
+ T @)W (@ — V'e@)f@)} di

{— ole®)] + 20 W @)I(x)

+ w'W (@ WE)u + l'(x)l(:c)} dt

= $[=(T)] — ble(t)]
T
+ f (@) + W@l @) + W @] de

Setting z(f;) = 0, the result follows.

2) Necessity: As before, assume that the system (1)
is started in the initial state z(¢) = 0. From the definition
of y(#), it follows that

T T
f 2u’ Oy (t) dt = f {2u'h(z) + w'[J(x) + J' (@) Ju} di
o to

If the system is passive, this integral should be nonnegative
for any T > fyand any u(-). This implies that [J(z) +
J'(x)] is a nonnegative definite matrix for all z, since
otherwise one could find* a u(f) such that the integral
became negative for some 7. Consequently, the symmetric
matrix [J(z) 4 J'(2)] admits of a (nonunique) 1actoriza~
tion

J(@) + J'(2)

Now for any state z,, there exists by controllability a
time % < 0 and a control u(-) defined on the interval
[t0,0] such that £(0) = z,. By passivity

= W'@)W(). @)

0 T
f 2’ Oy(@) dt + f 2u'(t)y(®) dt > 0.
to 4]

That is

T 0
f o'y () dt > — f ou' Oy (1) dt.
0 to

The right-hand side of this inequality depends only on xo,
whereas u(f) can be chosen arbitrarily for ¢ > 0. There
therefore exists a function C(xy) of xo alone such that

1 The construction is roughly as follows. First, find a control driving
z to a point where (J + J ) is no longer nonnegative definite; then
follow this with a “pulse’ in u large enough to overcome an} positive
contribution to the integral.

j; ' 2w’ By (t) dt > —C () ®)

whenever z(0) =
Now define ¢(z) .as

—Iim inf

T u(+)

T
o(xo) = , 2u’ )y () di (6
subject to (1) and the boundary condition z(0) =
Existence of ¢(z) follows? from the inequality (5); more-
over, it is clear that

$0) =0
and

ox) 2 0, for all x.

Let us suppose temporarily that [J(z) + J'(z)] is non~
singular for all z. Then, performing the optimization
indicated in (B) above, it is easily shown3 that ¢ (z) satisfies
the (Hamilton—Jacobi) equation

V@i + i) — 6 @Ve@ VT + J) b
~ 16 @Ve@)] =

If W(x) in (4) is chosen to be the positive definite square
toot of (J -+ J'), then a function I(z) may be defined as

lz) = (W)~ h@) — 3G’ @)V (@)]

from which (3) follows.

“If (J + J) is singular, the above procedure must be
slightly modified. In this case, a new matrix J,(z) is
defined as

J(z) = J(@) + 3l

for some small positive constant e. Functions ¢ .(x), .(z),
and W.(x) can then be defined in the obvious manner.
From (4), (5), and (6), it is then straightforward to
establish the existence of the limits

W{x) = im W (2)

«—0
o(x) = lirré ¢ .(x)
and
l(z) = lim L(z).
e—0
Since these limits are approached continuously, it is
simple to establish that (3) are in fact satisfied. VvV
The significance of Theorem 1 is that conditions for
passivity—essentially a property of the input-output
relationship of a system— have been stated in terms of

functions of the state vector; in a sense, (3) are conditions
on the internal structure of the system. It is worth noting

2.3 The details are not entirely trivial. However, the argument
follows the same lines as, say, [16].
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that (3) would remain unchanged if ¢ (x) where changed by
any constant amount. That is, the constraint ¢(0) = 0
could have been dropped, and the condition ¢{x) > 0
replaced by ¢{z) > ¢(0). To avoid trivia, however, only
those solutions for which ¢(0) = 0 will be considered in the
sequel.

If the physical significance of the vectors u(t) and y(¢)
are such that the integral in (2) represents input energy,
one can go even further. Recall that

T
ft 2u' Wyt dt = ¢[x(T)] — olr (k)]

-+ J‘T () + W)ul'[l(z) + W()u]l dt (7)

which may be interpreted as the “consérvation of energy”
equation

Input energy = Final energy — Initial encrgy
-+ Dissipated cnergy.

The nonnegative quantity ¢(x) then appears as the sfored
energy of the system, while the second integral corresponds
to dissipated energy. As expected for passive systems, the
dissipated energy is always nonnegative, although it is
path-dependent. The change in stored energy while
moving from state x(f) to 2(7T) is, of course, independent
of the path taken.

Since no physical significance has yet been attached to
the state vector z, the stored energy is not, in general,
uniquely specified by the state equations (1). Typically,
(3) will have a large number of solutions. However, it is
possible to place bounds on these solutions, as shown in the
following theorem.

Theorem 2: Equations (3) possess a maximum and a
minimum solution, in the sense that there exist solutions

¢.(z) and ¢,(z) such that
da(z) < ¢(2) < ¢.(2),

where ¢(z) is any solution of (3). Moreover,

T
2u’(yy(t) dt

for all

d.(zy) = —lim inf
Toew u(-)J0
subject to (1) and (0) = x,; and
0

¢ {re) = lim inf 2u' By () dt

fo— —c ul-) te
subject to (1), () = 0, and 2(0) = =,.
Proof: Trom (7), every solution sct {¢>(-),l(-),W(-)}
of (3) satisfies

T
f 2u' Oy () dt = ¢[x(T)] — dla(t)]

to

T

+ f ) + W)ul'[lz) + Wuldt (7)
to

where z(#) and y(¢) are solutions of (1). The left side of this

equation depends on u(-) and the boundary conditions on

2(?), but is independent of the particular solution set

FIONON 4O
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Let {qsi(-),li(-),Wi(-) }, 7 = 1,2, be two sets of solutions
of (3), and for simplicity define “dissipation outputs”

yi) = LIx@®] + W e @Ju®).
Then (7) implies that

T
oulz(T)] — alz(te)] + f W O &

to

T
= o] - wb@]+ [ wonO @ ©
for any »(-) and any boundary conditions z(¢),z(T).
Let ¢1(z) be ¢.(z). Then from the definition of ¢.(z),
there exists a sequence of controls {u(”( ) } such that, with
‘T(O) = To,

T
lim lim 2uN (YD) dt = —¢i(zo)
0

T—ox j—oo

where y?(¥) is the corresponding solution of (1). Thus,

( 7
lim lim {01l ()] + [ woromro dt} =0
Tow joo 0
where z9(¢) and 3, (¢) are defined similarly.
Equation (8) ean now be rearranged to give

T
im lim {qsg[lf(j)(T)] -|-f y0 (8
0

1
Tox joo

$2(z0) = 1(x0) +

(D) dt} — lim Hm <¢:[x22(T)]

T ow j—o
T
+ [ w0 ouoo al
0

The second limit is zero, from above, whereas the first is
nonnegative. Therefore,

da2(T0) > Pulo),

for all xq.
That is,

for all x

#(z) > ¢a(2),

where ¢(+) is any solution of (3). This completes the proof
that ¢.(x) 1s the minimum solution. That ¢,(x) is the
maximum solution may be shown in a similar manner.
\AAY)

In the terminology of Willems [4], ¢.(2) is the available
enerqy of the system (1)—by definition, it is the maximum
amount of energy that can be extracted at the terminals
when starting from the initial state z. Similarly, ¢.(z)
may be called the required energy, since it is the minimum
energy required to exeite the system to a state x from the
equilibrium (zero-energy) state. These two functions will
be identical if the system is reversible, [4].

Theorem 2 shows that all solutions ¢(x) of (3) lie in a
bounded set. It is also worth noting that this set is convex.

Lemma 1: If ¢1(z) and ¢:(x) are any two solutions of (3),
then

ag(x) + (1 — a)¢:(r)

(for any « such that 0 < a < 1) is also a solution.

é(x) =
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Proof: Corresponding to the solutions ¢ (2) and
¢2(x), there are vectors [;(z) and lx(z), and matrices Wi(z)
and Wa(z), appearing in (3). Now define,

2(12) _ ':\/;Zl(f) :l ﬁ’(”ﬂ) — l:\/zufl(x) }
} V1 — ab(@) ] ] V1 — aWa(z) |

Then #(z) is readily seen to be a solution of (3), with
I(z) = {(z) and W(x) = W(z). NAAY

Actually, the convexity of the set ol energy functions
has already been proved by Willems [14]. The novel
point of Lemma 1 is that it is possible to explicitly exhibit
the associated dissipation terms I(z) and W(z).

In a later section of this paper, the functions ¢(z) will
be used as Lyapunov functions; it is therefore of interest to
note conditions under which ¢(z) will be positive definite
(in the sense that ¢(z) = 0 implies z = 0).

Definition: The system (1) will be called observable if,

for any trajectory such that u«(t) = 0, y(¢{) = 0 implies
z() = 0.
(Note that this is a weaker condition than is required by
more standard definitions of observability. Observability
in the above sense does not imply the ability to deduce the
initial state from output measurements alone, although it
does imply the ability to detect the presence of a nonzero
state.)

Lemma 2: If the system (1) is passive and observable,
then all solutions ¢(2) of (3) are positive definite.

Proof: Suppose that there exists some z, such that
é(x0) = 0, and let z(¢) be the solution of

i) = flz@®], =(0) = z.
Then, from (3),
1
ém(t)] = Vi(@)f) = —U'@)(@). ©)
Therefore,
o[lz®] < ¢lael,  fort > 0.

It follows that ¢ [z(f)] is identically zero along this trajec-
tory, so that {[x(¢)] is also zero. Since ¢(z) is a continuous
nonnegative function of z, it also follows that Ve(z) is
zero along the same trajectory. From the second of equa-
tions (3), then,

hlz(®)]=0

along the same trajectory.

Unless z, = 0, this contradicts the assumed observ-
ability of (1). It must therefore be true that ¢(z) is positive
definite. \avAv}

Corollary: If the system (1) is passive and observable,
then the free system

% = f(@)

is (Lyapunov) stable.
Proof: This follows directly from (9). VvV
Note, however, that asymptotic stability has not been

377

proved. This generally requires stronger conditions than
have been noted above.

The preceding discussion has shown that there is a
natural ordering of the solutions of (3), corresponding to
an ordering in the stored energy ¢(z). As an alternative,
one could define an ordering of sclutions in terms of
dissipated energy. This approach is illustrated below.

Definition: With {¢i(x),li(x),Wi} any solution set of
(3), let

Yi = Fi{u}

represent the input-to-dissipation output relationship of
the system

I

@) + G@)u
Y Li{x) + Wi(z)u. (10)
Then Ty has less delay than I, written Ty < T, if, for

any time #; > &, and any common input ©(-)eLz[t,t ],

L W Ol dt > f v O di

14}

X

i

(11)

whenever z(f,) = 0, and if equality does not hold for all
u(t) and all 4. The notation T; < T will be used in case
(11) holds, with the possibility that equality always holds.

The relation < represents a partial ordering, based on
the amount of energy dissipated along any given trajec-
tory.

Theorem 3: Let Ty and T, be any two members of the
family (10). Then T'; < T if and only if ¢1(z) < ¢a(z) for
all z. Moreover, regardless of any ordering between T
and T,

T T
[ wonoa= [ wowoa a2

for any u(-) such that 2(T) = z(%).
Proof: The proof is obvious from (8). vvv

The meaning of the description “less delay’’ should now
be clear. For any common input to the two systems, the
dissipation responses have the same mean square value
(see (12)) but (11) shows that the main part of the re-
sponse occurs earlier for the first system than for the
second. In particular, the system whose stored energy
function is ¢.(x) is a minimum delay system. At the other
extreme, the system whose stored energy is ¢,(z) is a
mazximum delay system.

For linear systems, the concept of “minimum delay”
actually turns out to correspond with the classical notion
of “minimum phase.” This special case has been previ-
ously studied by Anderson [17], in the context of spectral
factorization of power spectrum matrices. Reference [17]
also establishes that there is a sense in which the term
“maximum phase” could be applied to maximum delay
systems, as defined here.

ITI. AppLicaTion TO OprimalL CONTROL

A typical problem in optimal control theory is the
following:
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Given the system equations
% = fz) + Gu

where f(-) is a real function of the vector 2 possessing
continuous derivatives of all orders, f(0) = 0, and G is a
constant matrix, find a control w(¢) that will minimize the
performance index

(13)

lim

T—o»

T

V, = {n[x(T)] +f V@)l + v'ul dt} (14)
0 )

where n(z) > 0 for all . Without substantial loss of

generality, it may be assumed that 1(0) = 0 and n(0) = 0.
The optimal control will in general be of the form

—k(x)

and the minimum value of the performance index will be
some function ¢(x,) of the initial state z,. However, it may
well be that there exist many different functions !(x), and
correspondingly different ¢(z), for which the same control
law (15) is optimal. If the system (13) and control law
(15) are given, we shall say that the pair {¢(-),Z(-)} isa
solution to the ‘nverse problem if the performance index
(14)—for some nonnegative choice of n{z)—is minimized
by (15), the minimum value being ¢ (z).

Necessary and sufficient conditions for the existence of a
solution to the inverse problem have been given in [16].
For linear systems with linear state feedback, one can in
fact obtain extremely detailed results, the best-known
results being those of Kalman [1S]. However, these
references are primarily concerned with obtaining one
solution to the inverse problem. A method of gencrating
all solutions is indicated in the folowing lemma.

Lemma 3: Suppose that the system equations (13) and
control law (13) are given. Then a pair {¢(-)J(-)} is a
solution to the inverse problem if and only if ¢(r) and
{(z) satisfy the equations

V(@) [f(x) — 3Gk@)] = —T'(@)l(x)
3G'Vo(z) = k(2)
¢(0) =0

C ok =

(15)

and

¢(x) >0, forallz.

Proaof: 1) Suppose {¢(-),l(~)} is known to be a solution
of the inverse problem. Then k(z) is given [16] from
standard Hamilton—-Jacobi theory as

k(x) = $G'Vo(x)
which shows that the second equation is satisfied. Also,

[16], ¢(x) must be a nonnegative solution of the Hamilton—
Jacobi equation (in its limiting form)

Vig(@)f(x) — Ve @)GGVo(x) + (@) =0

from which the first equation follows.

2) Suppose that ¢(z) and l{(x) are known to satisfy the
above equations. Then it is easily shown that, for any
square-integrable u(-),

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, AUGUST 1974

T
ﬁ [(@)l(z) + w'u]dt = ¢[2(0)] — ¢[2(T)]

T
+ [ @V + k@)
0

Setting n(z) = ¢(x), the result follows. vVvv

In view of Theorems 1 and 2, these results may be
summarized as follows.

Theorem 4: A necessary and sufficient condition for the
existence of a solution to the inverse problem is that the
system ’

x

I

flz) — 3Gk(z) + Gu
y = k)

be passive. If this condition is satisfied, then there exist
two solutions {¢a(~),la(-)}, and {q&,(-),l,(-)}, not neces-
sarily distinct, such that all other solutions OrOY
satisfy the constraint

d.(z) < o) < o,(2),

for all x.

IV. SixguLar OpTiMIZATION PROBLEAMS

As a further application of the results of Seetion II,
consider the following problem:
with z(f) governed by

£ = f@) + G,

find u(-) such that the performance index

z(0) = =z (16)

lim

T—x

T
Po= dim [ ) + W@u) i) + Wl d (7
is minimized. In addition to the state equation (16), there
may be boundary conditions on z and possibly some con-
straints on wu.

If W' (x)W(z) is invertible for all x, the solution of the
above problem is relatively straightforward. If, on the
other hand, W'(z)W (z) is singular, most standard opti-
mization methods fail to find an optimal sclution. Al-
though it is straightforward to establish that the optimal
control is bang-bang (that is, the control attains its limits,
or is infinite if there are no a priori bounds) for most
values of z, there is the possibility of singular regions
where the optimal control is determined by criteria inde-~
pendent of the bounds on u. The determination of the
location of the singular regions in the state space is
usually the most difficult step in solving the above prob-
lem.

For the purposes of this section, it will be assumed that
there are no a priori bounds on u, and that boundary
conditions for z have not yet been specified. That is, we
wish to derive the optimal controls for all possible com-
binations of boundary conditions. A singular region will
then be defined as any region in (r,u) space in which the
optimal control is finite. (This differs from the usual
definition, in that the case where W’ (x) W (z) is invertible
has not been excluded.) Depending on the actual con-
straints on # and on the boundary conditions, some of
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these regions may not in fact enter into the optimal solu-
tion, but these considerations are most easily handled
after the singular regions have been located.

An obvious eandidate as a singular region is the region

Wz + W()u = 0.

However, trajectories in this region may not have the
property that the boundary conditions are met. Moreover,
the region may be a trivial one, consisting only of the
origin. To proeceed further, it is obviously necessary to find
all the singular regions, and then to exclude those which
do not meet the side constraints.

In the sequel, it will be assumed that the free system

% = fx), =(0) =2 (18)

is asymptotically stable. [Unstable systems can also be
handled if it can be shown that there exists a stabilizing
feedback control law* for the original system (16). Sup-
posing that this control is of the form —k(z), a new control
can be defined via

U = U — k(x)

and (16) and (17) modified appropriately. This does not
change the form of (16) or (17).] With this assumption,
define® a function ¢(zx) via

o) = [ reie @
[where x(t) is governed by (18)], and then define functions
h(z) and J(z) as
h(z) = 3G'(@)Ve(z) + W (z)l(z)
J() = TW ()W (x).

The significance of these functions is shown in the following
lemma.
Lemma 4: The system

% = f(=) + Gx)u
y = h(z) + J(@)u
is passive.
Proof: From the definition of ¢(x), it follows that
Vie@)flx) = —U'@)x)
and that

¢(x) >0, forallz.

Equations (3) are therefore trivially satisfied, and Theorem
1 may be applied. VvV
"A number of singular regions may now be derived as
follows.
Theorem 6: With h(z) and J{x) defined as above, let
{¢¢(x),li(:c),W,-(:v)} be any solution set of the equations

Vg:i(@)f @) = —1/(@)l(z)
t Controllability appears to be a sufficient condition for such a

control law to exist [16].
5 Boundedness of ¢(-) needs to be explicitly assumed.
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1@ (2)Vei(z) = h(z) — W/ (2)l(x)
W/ (@)Wz) = J@) + J'(@).
Then the region

(19)

Li@) + Wiz)u =0

is a singular region.
Proof: By defining a new function

b(@) = o(x) — ¢:(@)
the following set of equations may be derived:
V'e@)fx) = 1/ @)ix) — U'(x)l(x)
3G @Ve() = W/ @) — W' (@)(x)
W/ )W (x) = W ()W (x).
Then, with 2(f) given by (16),

(20)

[

I

d . , .

o $lz(@)] = V'é@)f(x) + V'(x)G(x)u

for any u(f). With the aid of the above equations, this
reduces to

J .
o P01 = L) + Wi2)u]'[l(e) + Wiz)u]

— [lz) + W)ul[l(z) + Wix)ul
Therefore, for any times { and #; > &,

f ) [lz) + W] [iz) + Wul di = $lz(t)]

to
— o) + L " L) + W@l ) + W] d.

Equation (20) is therefore a sufficient condition for opti-
mality, provided that the boundary conditions are such
that ¢lz(t)] is also minimized. It follows that (20) de-
scribes a singular region. \AAY

Note, incidentally, that the above theorem holds
whether or not W’(z) W (z) is invertible. If this matrix is in
fact invertible, then the ‘“singular region” covers the
entire state space, and the solution for u reduces to that
found for nonsingular problems. In all other cases, (20)
can be satisfied only in a subset of the state space. It is felt
that a major contribution of this section is that Theorem 5
covers singular and nonsingular problems equally well, by
considering nonsingular problems in z space as ‘“‘singular’”
problems in (z,u) space.

V. ToLERANCE OF SECTOR NONLINEARITIES

In this section we investigate the stability of the system
#(0) = fle®]+ G¥{kle@®]1} @

where f(-) and %(-) are known linear or nonlinear func-
tions, @ is a known matrix, and ¢(-) is an unknown non-
linearity. However, ¢(-) is partly constrained by the
conditions
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' [Y(e) — To] > [¥{o) — Toel'M[¥(c) — To] + ed’o,
foralle = 0 (22)

and

v(0) = 0.

In the above inequality, T and A are known constant
matrices, with A/ nonnegative and symmetric, and ¢ is a
small positive scalar constant.

In the case of independent nonlinearities, i.e., the jth
component of ¥ (o) depends only on the jth component of
¢, we may take 7' and M to be diagonal. The inequality
then reduces to a set of inequalities of the form

<m<tﬁ+i.

a; My

tii

That is, the graph of ¢;(¢) as a function of ¢, is known to
lie in the sector bounded by straight lines of slope ¢;; and
ti: + (1/m;). In general, then, we call ¥(¢) a sector non-
linearity.

The main result is as follows.

Theorem 6: If the system

% = f(2) — GTk(x) + Gu
y =k(z) + Mu

is passive and observable, then the system (21) is asymp-
totically stable.

Proof: The conditions of the theorem imply the ex-
istence of {p(-),I(-),W}, with ¢(-) positive definite, such
that

Vie@)f(z) — V'e()GTk(z) = —U'(@)l(z)
3G'Ve(@) = k(z) — W'i(z)

M+ M =WW.
With z(¢) governed by (21), it follows easily that
d t
BEOL_ v 4 — vo@anike))

= —{l@) — WYk@)] + WThE)} {I)
— Wylkz)] + WTh)}
— 2{K' @) [ [kE)] — Th(z)]
— WIk@)] — TE@VMPkE)] — TE@)I}.

The derivative is clearly nonnegative, so that ¢(z) is a
Lyapunov function establishing stability for (21). More-
over, the above derivative can never be identically zero
along a nontrivial trajectory, for by the inequality (22)
this would imply that k(x) = 0 along the same trajectory;
this possibility is ruled out by observability. It then
follows [19] that

lim ¢[z(@#)] =0

t— o

which is sufficient to prove asymptotic stability.  VVV
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VI. ConcLUSIONS

The central point of this paper is of course, Theorem 1.
Here, it is shown that passivity of a certain class of sys-
tems is equivalent to the existence of a state funection
¢(x) satisfying a set of well-defined cquations. The sig-
nificance of this theorem is that the ‘npuf-output property
of passivity may be replaced by a set of constraints on the
internal structure of a system. The interpretation of ¢(x)
as an energy function is in a sense a secondary issue, but
it allows some useful insights into the meaning of Theorem
1.

As with the more general storage functions of Willems
[4], [14], it turns out that the stored energy is nonunique;
this implies, among other things, that when one is inter-
ested in computing internal energy the state equations
provide an incomplete description of a system. Consider
for example the ca<e of linear systems. It is natural to call
two systems equivalent [20] if their state vectors z(f) and
F(t) are such that ¥() = Tz(t) for all ¢, for some invertible
matrix T. Supposing that the stored energies for the two
systems are given by z’Pz and #'PZ, then it is not neces-
sarily true that P = 7’PT. This conclusion has a natural
and fairly obvious physical interpretation in the case of
electrical networks, but the implications for more general
control systems are not entirely clear. It would be of
considerable interest to develop a theory of control sys-
tems which took account of the differences between
different systems having the same state equations.

The applications listed in Scctions ITI-V are intended
only as a brief survey; it is clear that one could obtain
stronger or more general results for the problems men-
tioned in these sections. For cxample, the Lyapunov
function of Section V could be augmented by an integral
term involving the unknown nonlinearity (as was done in
[11]), with a corresponding increase in generality of the
system of Theorem 6. Another area where the theory
shows promise is in the synthesis of nonlinear electrical
networks; the concepts of stored and dissipated energy are
readily translated into physical terms, and the only real
problem is to determine how the network elements should
be interconnected. Yet another application is in problems
involving the stability of interconnected systems—the
work of Zames [3] is especially relevant here. The precise
details in these last two cases still remain to be worked out.
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Abstract—Sufficient conditions are presented for the existence of
periodic motions in a class of autonomous, time-invariant, non-
linear feedback systems. The conditions can be interpreted as circle
type criteria, stated in terms of the frequency response and root
locus diagrams for the system’s linear part, and in terms of the
characteristics of the nonlinearity.

I. InTRODUCTION

HE present paper is concerned with establishing the
existence of nontrivial periodic solutions, for the
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Motion in Nonlinear
Systems

NOLDUS

differential equation of an autonomous, time-invariant,
nonlincar feedback system. While a genceral theory of non-
linear oscillations is available for second-order systems,
where analytical-topological methods may be applied very
nicely, the problem remains a challenging one for systems
of order higher than two. For its solution, only a few basic
principles can be found in the textbooks. Truly, some
results of this kind, for specific cases of third-order sys-
tems, have been known for a relatively long time, one
much cited example by Rauch [1] going back as far as
1950. Other examples can be found in the Russian litera-
ture [2]. It scems difficult however to derive a simple
criterion that applies to the case of a gencral system of
order n, containing an arbitrary nonlinear amplifier.



