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Implications of Passivity in a Class of 
Nonlinear Systems 

Abstract-For a broad class of nonlinear  systems, a  connection is For more  general c,ontrol systems, t,he physical  meaning 
established  between  the input-output property of passivity and a and  implications of passivity are less clear. The usual 
set of constraints on the  state  equations of the system. These con- 
straints  are  then-  interpreted  in  terms of the  stored  energy  and approach-and  one that will be  adopted  in  this paper-is 
dissipation of a  passive system. Applications are given in two to  Proceed by analogy  with the networks case and define 
problems of optimal  control  theory, and a generalized form of the an  “input  energy”  for  the  system.  Passivity is then 
circle criterion is also  derived. defined in  terms of a nonnegativity  condition  on  this  input 

I. INTRODUCTION One of the  main  motivations for studying  passivity  in 
energy. 

I N  electrical  network  theory, the distinction  between 
active  and passive  networks  has  long  been  considered 

an  important one. The distinction is simple;  active  net- 
works may  contain  internal  energy sources, whereas 
passive  networks-at least  in principle-do not. Because 
of the obvious  physical  implications of classifying net- 
works in  this  way, a large  body of literature  has grown 
up on the  subject of passive  networks [1],[2]. 

the control  theory  context  has  been  its  connection  with 
stability [3],[4]. An especially important  result  in  this 
area  is  the Kalman-Yakubovich-Popov  lemma [5]-[7] or 
Positive  Real  Lemma, which  was  used in solving the welI- 
known stability problem of Lur’e [8]. In  essence, this 
lemma  states  that a transfer  function is positive  real if 
and  only if a  certain  set of matrix  equations  has a non- 
negative definite solution.  The  connection  between posi- 
tive  real  functions  and passive systems  is, of course, well 
known 191. Generalizations of the Dositive real  lemma  are 
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also include  spectral fact.orization [E], network  synthesis 
[21], and  the solut,ion of an inverse  problem of linear 
optimal cont.rol 1131. 

The main  limit,ation of the posit,ive real concept is t,hat 
i t  applies only to 1inea.r systems. For nonlinear  systems, 
the most promising approach to  studying  the  properties of 
passive  syst,ems appears  to be t,hat of Willems [14]. The 
starting point in Willems’ theory  is  the definition of a 
“dissipat,ivc” syst.em in t.erms of an incquality  involving. 
in effect, the stored energy of t.he system.  Passivity,  as 
defined in this  paper,  then  appears  as a special case of 
dissipativeness. 

The results of this  paper lie somewhere bctw-m those 
for  linear  systcms and those for the rxtrcmely general class 
of systems  studied  by Willems. The principal  restriction 
imposed is that  the  state equations for t.he systems con- 
sidered  should  involve the control  vector only linearly. 
(This  condition  is less rest,rict,ive  t,han it  nught at. first 
appear t,o be.  Balakrishnan 1221 has shown that,,  under 
very mild restridons,  there exists  a choice of st,at,e 
vector for almost any controllable  finitedimensional 
syst.em such that  the cont,rol appears linearly in the  &ate 
equations.) By making t.his restriction, it, turns  out t.0 be 
possible to obt,ain  results that  are considerably  more 
explicit than  have  hitherto been available  for  nonlinear 
systems. In  fact, t.he central  result could be interprcted as 
a  nonlinear version of the positive  real  lemma. 

This  result, given as Theorem 1 in Sect.ion 11, is t,he 
cornerstone of the subsequent  development.; as with  the 
posit,ivc real  lemma, it. shows that a system  is  passive if 
and only if there exists a  cert.ain  scalar  function of t.hc 
&ate which is nonnegat.ive. The remainder of Scction 11 
is devoted to  shoxing  that, t.his funct,ion  has the properties 
of stored  energy,  thus  arriving  by a. different route  at. 
some of the results of [14]. 

In  Sect.ions 111-V the results of Section I1 are applied 
to  a class of inverse  opt.imal cont.ro1 problems,  a class of 
singular  control  problems, and a  nonlinear  extension of 
the  Popov  stability problem [S],[lj]. X11  of t,hese results 
are believed to  be new, alt,hough  a  restricted  version of the 
results of Sect,ion 111 has been  report,ed  in [16]. The 
algorithm of Section IV is  part.icularly  interest.ing,  in that 
i t  achieves  a partial solution of a  singular  optimal  cont,rol 
problem by met-hods which are equally  applicable to non- 
singular problems. It appears  t.hat t.hese ideas could be 
extended  considerably, ahhough  the details  still  remain 
to  be worked out. 

11. h i  ALGEBRAIC CONDITIOX FOR PASSIVITY 

The systems to be st.udied in t.his paper  are described 
by the equa.t.ions 

k = f(x) + G(x)u 

y = h.(x) + JG)u (1) 

where f( a )  and h( .) are real vect.or functions of the  state 
vector a, wit.h f(0) = 0, h.(O) = 0, and G ( - )  and J (  0 )  are 
real matrix funct.ions of x. In  order to  guarantee  the 
existence of solut,ions t.o the equations t,o be  introduced 
below, it will b r  assumed that f( .), G( .), h (  .), and J (  .) all 
possess cont,inuous  derivat.ives of all  orders,  although 
weaker conditions would probably suffice. The input, 
vector 11 and  the out.put.  vector y ha.ve tlhe  same  dimension, 
so that J ( s )  is a square  matrix.  The syst.em is assumed to  
be complet,cly controllable,  in the sense t,hat. for any finite 
stat,cs x. and 11, t.herc exists a  finite  time tl and a  square- 
integrable cont,rol u(t) defined on [O,t,] such that t.he state 
can  be driven  from x(0) = 10 t,o x(t1) = 2 1 .  In  addit.ion, a 
form of local cont,rollabilit>- is assumed;  for  any x0 and 
any x1 in  a  suitably small open neighborhood of ro, t,here 
exists a choice of u(. ) and tl as  above 1vit.h t,he additional 
pr0pert.y that 

ilf’ u’( t )y( t )  i l l 1  5 P(ll2-1 - aoll) 

for some continuous p ( . )  such that p ( 0 )  = 0. 

whenever x(to) = 0 (for any a), 
The dynamical  system (1) will be called pa.ssine if, 

JOT 2u’(t)y(t) clt 2. 0 

for  all T 2 io and all square-integrable u(t). (The mu1t.i- 
plier 2 is simpl:: a scaling fact,or Tvhich it will be con- 
venient to use in t.he following equations.) The quantit.y 
on t.he  left-hand side of (‘2) will sometimes  be called the 
input energy. 

An alternat,ive  formulation of condit,ion (‘2) is given in 
the following theorem. 

Theorem 1: A necessary and sufficient condit,ion for 
system (1) to  be passive is that  there exist real  functions 
+(.), Z( . ) ,  and W ( . ) ,  mith +(x) continuous  and  with 

$(x) 2 0, for all x 

and 

d o )  = 0 

such that 

V’$5(z)f(x) = --Z‘(x)Z(.r) 

+G‘(z)V~(X) = h ( ~ )  - W ’ ( Z ) Z ( X )  

J ( x )  + J’(x) = rn‘(x)W(x). (3) 

1\Ioreover, if J is a  constant  mat.rix, t.hen W may  be  taken 
t.o be const,ant.. 

Proof: 
1) Suficimcy: Suppose 4 ( . ) ,  I ( - ) ,  and W ( - )  are 

given such  t,hat (3) are satisfied. Then for any square- 
integrable u.(t), and  any fo and T 2 to, and  any a(&), 



MOYLW: PASSIVITY IN N O N L I N E m  SYSTEMS 

T lT Bu’(t)y(t) dt  = {2u‘h(z) + u’[J(x) + J’(z)]u)  dt 
to 

= lT 
= lT {V’+(x>[f(z) + G(x)uI 

[u’G’(z)V+(z) + 2u’W’(z)l(x) 

+ u’W’(z)W(z)u] dt 

+ 2u’W’(z)Z(z) 

+ u‘W‘(z)W(z)u - V’+(z)f(z) ) dt 

+ u’W’(z)W(z)u + Z’(x)Z(z) clt 1 
= +[z(T)I - +[z(ta)I 

+ LTIZ(x)  + W(z)uI’[Z(z) + W(x)uIdt. 

Setting z(to) = 0, the result, follows. 
2)  Necessity: As before, assume that  the syst.em (1) 

is  started  in t.he init,ial state z(to) = 0. From  the definition 
of y ( t ) ,  it follows that, 

lT 2u’(t)y(t) dt = {2u’h(z) + y’[J(x)  + J’(x)]zc) dt. LT 
If the system is passive, this  integral should be nonnegat,ive 
for any T 2 to and  any u ( - ) .  This implies that, [ J ( z )  + 
J’(x)] is a nonnegative definite matrix for all z, since 
otherwise  one  could findl a u(t) such  that.  the  integral 
became  negative for some T.  Consequently, the symmetric 
matrix [J(z )  + J‘(x)].a.dmit,s of a  (nonunique) ract,oriza- 
tion 

J ( z )  + J’ (x )  = W‘(z)W(z). (4) 

Nom for any  state zo, there exist,s by controllability  a 
time to < 0 a.nd a  control u( .  ) defined on the  interval 
[to,O] such  t.hat x(0) = 2 0 .  By passivit,y 

lo Bu’(t)y(t) dt + S T  2u‘(t)y(t) dt 2 0. 
0 

That is 

SOT 2u’(t)y(t) dl 2 - 2u’( t )y( t )  dt. s,” 
The  right-hand side of this  inequality  depends only on xo, 
whereas u(t) can  be chosen  arbit,rarily for t 2 0. There 
therefore exists a funct.ion C(zo) of zo alone  such that 

X to a point  where (J + J’) is no longer nonnegative  definite; then 
1 The construction is roughly as follows. First, h d  a control  driving 

follow this wit.h a “pulse” in u. large enough to  overcome any posit.ive 
contribution to  the integral. 
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lT 2u’(t)y(t) dt 2 -C(z,) (5) 

T-+a u ( . )  SOT (6) 

whenever z(0) = xo. 
Kow define +(x) -as 

+(ao> = -1im  inf 2u’(t)y(t) dt 

subject to (1) and  the  boundary  condition x(0) = 20. 
Exist.ence of +(x) follows2 from  the  inequality (5); more- 
over, i t  is clear t,hat, 

+ ( O )  = 0 

and 

+(x) 2 0, for all x. 

Let  us suppose t.emporarily that [ J ( x )  + J’(z)] is non- 
singular for all x. Then, performing the optimization 
indicat-ed in (6) above, it is easily shown3  t.hat +(x) satisfies 
the (Hamilton-Jacobi) equation 

V’+(z)f(~) + [h(z) - +G’(z)V+(x)I’(J + J’)-’[h(z) 

- +G‘(z)V+(z)] = 0. 

If W ( z )  in (4) is  chosen t.0 be  the posit.ive definite square 
root of ( J  + J’),  t,hen  a  function Z(x) may  be defined as 

7 ( ~ )  = (W’)-’[h(z) - +G’(z)V+(z)] 

from  which (3) follows. 
If ( J  + J‘) is  singular, 

slight,ly modified. In  t.his 
defined as 

J b )  = 

t.he above  procedure  must be 
case, a new matrix J , ( z )  is 

J ( x )  + +I 

for some  small  positive constant, E .  Functions +.(x), Ze(x), 
and We(x)  can t,hen be defined  in  t,he  obvious  manner. 
From (4), (5), and (6), it is  then  straight,forward to 
establish  the existence of the limit,s 

W(z)  = lim W,(x)  

+(x) = lim 4 h )  
r+O 

c-0 

and 

Z(z) = lim ZAz). 

Since  these  limits a.re a.pproached  continuously, it is 
simple to establish that (3) are  in  fact satisfied. vvv 

The significance of Theorem 1 is that conditions for 
passivity-essentially  a property of the  input-output 
relationship of a  system- have been stated  in  terns of 
functions of the  st.ate  vector;  in a. sense, (3) are  conditions 
on t.he internal  struct,ure of the system. It is m7ort.h noting 

e-0 

follows the same lines as, say, [ 161. 
2.3 The details are  not entirely trivial. However, the  argument 



that (3) would remain  unchanged if +(x) where changed  by 
any constant  amount.  That,  is,  the  constraint +(O) = 0 
could hare been dropped,  and  the condition 4(x) 2 0 
replaced  by +(x) 2 4(0). To avoid trivia, hon-ever, only 
t,hose  solutions for which 4(0) = 0 will be considered in the 
sequel. 

If the physical significance of t,he vect.ors u(t) and y(t) 
are such t.hat> the int,egral in (2) represents  input  energy, 
one  can go even further. Recall t.hatr 

JUT Zu’( t )y( t )  dt  = ~ [ x ( T ) ]  - +[.(to)] 

+ J T  [[(x) + W ( . Z > Z l ] ’ [ l ( X )  + W(X)21] clt (7) 
c 

which may be int,erpret,ed as the “conservation of energy” 
equation 

Input energy = Final energy - 1nit.ial energy 

+ Dissipated  energy. 

The nonnegative quantity +(x) then  appears as the stored 
energy of the syst.em, while the second integral  corresponds 
to  dissipated  energy. -4s expected for passive systems, the 
dissipated  energy is aln-ays nonnegat.ive,  although it is 
pat,h-dependent. The change in  stored  energy while 
moving from state r(to) to  x(T) is, of course?  independent 
of the  path  taken. 

Since no physical Significance has yet. been attached  to 
t,he state vect.or 5 ,  the stored energy is not, in gcneral, 
uniquely specified by  the  state equations (1). Typically, 
(3) n-ill have a large  number of solutions.  However, it is 
possible to  place bounds on these  solutions, as shown in the 
following theorem. 

Theorem. 8: Equat3ions (3) possess a maximum and a 
minimum solut.ion, in the sense that, t.here exist solutions 
&(x) and &(x) such that 

+a(.) I +(X) 5 d h ) ,  for all 5 

where +(x) is any solution of (3). Moreover, 

subject, to (1) and x(0) = zo; a.nd 

+r(.l-o) = lim inf JCo “ u ’ ( t ) y ( t )  dt 
h--- u : . )  

subject. to  (1). x(to) = O ?  and ~ ( 0 )  = ;ro. 

of (3 )  satisfies 

JOT 2 ? i ’ ( f ) y ( f )  d t  = $ [ x ( T ) ]  - + [ . ~ ( t g ) ]  

Prooj: From (7), every solution set {~(.),~<.>?IV(~)~ 

+ J’ [ l ( .c)  + m(s)z l ] ’[r (x )  + W ( X ) 1 1 ]  dt (7) 
to 

where r ( f )  and y ( t )  are solutions of (1). The left side of this 
equation  depends  on z l (  . )  and bhe boundary  conditions  on 
x( t ) ,  hut, is independent of t.he particular  solution set. 
{4(.>,u.>?w(.> 1. 

Let ( ~ j ( . ) . r j ( . ) ? m r j ( . ) l ,  i = 1,3, be t,wo sets of solutions 
of ( 3 ) ,  and for simplicity  define  “dissipation outputs” 

y,(t) = Zi[X(t)] + w i [ I ( f ) ] 2 l ( t ) .  

Then (7) implies that 

41[x(T) 1 - 41[2(to) 1 + JOT Yl’(t)Yl(t) dt 

T 
= 4 2 W )  1 - h [ 4 f 0 )  I + y?‘(t)y?(t> dt (S) 

for any u(.) and  any  boundary condit,ions z ( t0 )~x (T) .  
Let +l(s) be &(x). Then from  t,he definition of +Jz), 

there exists a sequence of controls {u( j ) ( . )  ] such  that,,  with 
x(0) = x g ,  

T 
linl lim S, ~ u ( j ) ’ ( t ) y ( j ) ( t )  dt = -+.l(xo) 
T-2 j+a 

where y(j) (t) is the corresponding solut.ion of (1). Thus, 

\\-here .r(j’(t) and yl(J’(t) are defined sindarly. 
Equation (8) can now be  rearranged to give 

The second limit. is zero, from above,  xhereas  the first, is 
nonnegative.  Therefore, 

&(so) 2 +1(x0), for  all so, 

That is, 

+(x) 2 &(x), for all x 

where +( . )  is any solution of ( 3 ) .  This completes  t,he proof 
that &(x) is the minimum  solution. That &(x) is t.he 
nlaxirnunl solut.ion may  be shown in a similar manner. 

vvv 
In  the terminology of Willems [4], + a ( x )  is the aznilabte 

energy of the system (1)-by definition?  it is the maximum 
amount. o f  energy t,hat  can be extracted at  the terminals 
when starting from t.he init,ial state s. Similarly, +T(x)  
may be called the required  energy, since it is the nlinimunl 
energy required  to excite the system to a state I from the 
equilibrium (zero-energy) state.  These  two  functions will 
be  identical if the system is reversible, [Ir]. 

Theorem 3 shows that. all solutions 4(.r) of (3) lie in a 
bounded set.. It is also 1vort.h notling that  this set, is convex. 

Lenrma 1: If +1(x) and 4?(.r) are  any tn-o  solutions of (3) , 
then 



MOYL.4N: PMSIVITP IN NONLINEAR SYSTEMS 377 

Proof: Corresponding to  the solutions +1(z) and 
+&), there  are  vectors Zl(z) and Z&), and mat,rices W1(x) 
and W 2 ( x ) ,  appearing  in (3). Kow define, 

Then &(x) is  readily seen to  be a  solution of (3), with 
Z(x) = i(z) and W ( x )  = ?$T(x) .  vvv 

Actually, the convexity of the  set of energy functions 
has  already been proved b y  Willems [14]. The novel 
point, of Lemma 1 is t,hat  it is possible to  explicitly exhibit, 
the associa.t,ed dissipation terms i(x) and %(x). 

In  a later section of this  paper,  the functions +(x) w i l l  
be used as Lyapunov  functions; it is therefore of interest, to 
not,e  conditions  under which +(x) will be posit.ive definite 
(in the sense that +(x) = 0 implies z = 0). 

Definition: The system (1)  will be called obsermble if, 
for any traject.orS7 such  that, u(t) 0, y ( t )  0 implies 

(ITot,e that  this is a. weaker condition  tha.n  is  required by 
more st.andard definitions of observabilitp.  0bservabilit.y 
in  the  above sense does not imply  t,he  abilit,y to  deduce the 
initial state from output  measurements alone,  although it 
does imply  t,he  ability to det.ect the presence of a nonzero 
stat.e.) 

Lenznza 2: If tlhe  system (1) is passive a.nd observable, 
then  all solut,ions +(x) of (3) are posit.ive definite. 

Proof: Suppose that  there ekists some zo such  t>ha.t 
+(zo) = 0, and  let z(t)  be  t,he solut,ion of 

z(t)  = 0. 

R ( t )  = f[z(t)], z(0) = zo. 

Then,  from (3), 

-+[&)I = V‘+(z)f(z) = -Z’(x)L(z). (9) 
cl 
dt 

Therefore, 

4 [ 4 0  1 i +[201, for t 2 0. 

It follows that +[z(t)] is ident,ically zero along t.his trajec- 
t,or>-, so that Z[z(t)] is also zero. Since +(x) is  a  continuous 
nonnegat,ive  function of x, it also follows that B4(z) is 
zero along  t>he  same trajectory.  From  the second of equa- 
tions (3), t,hen, 

k[z ( t ) ]  = 0 

along the same  trajectory. 
Unless zo = 0, this contra.dicts the assumed  observ- 

abi1it.y of (1). It. must,  therefore  be  t.rue that. +(x) is positive 
definite. VVV 

Corollary: If the system (1) is passive and observable, 
then  the free syst.em 

3i- = f(x) 

is  (Lyapunov)  stable. 
Proof: This follows directly  from (9). vvv 

Note, however, that, a.symptotic stability ha.s not been 

proved. This generally requires  stronger  conditions than 
ha.ve been noted a.bove. 

The preceding discussion has shown t.hat. there  is a 
natural ordering of t.he  solutions of (3), corresponding t.o 
an ordering  in the stored energy +(x). As an altmnat,ive, 
one could define a.n ordering of solutions  in  t,erms of 
dissipated  energy. This  approach  is  illustrated below. 

Dejnifion.:  With {&i(z),li(x),Wi] any solut,ion set of 
(3), let, 

represent the input.-t.0-dissipat,ion out>put,  relationship of 
the system 

3i- = f ( z )  + G(z)u 

Then rl has less delay  tha.n rs, written r1 < rs, if, for 
any  time tl 2 fa, and  any common input u( - )  ~ L ~ [ t ~ , t ~ ] ,  

P I ,  P f l  

ivhenever z(f+) = 0, and if equality does not  hold  for  all 
u(t) and all tl. The notmation rl 5 rs will be used in case 
(11) holds, with the possibi1it.y t,hat  equality always holds. 

The relat.ion 5 represents  a  partial  ordering, based  on 
the  amount of energy  dissipated  along any given trajec- 
tory. 

Theorem 3: Let. rl and rs be any  two members of the 
family  (10).  Then rl 5 r r  if and only if +1(x) 5 & ( x )  for 
all x. AIoreover, regardless of any ordering  between rl 
and r2, 

loT yl’(t)yl( t )  clt = lo yz’(t)yz(t) dt 
T 

(12) 

for any .(e) such t.hat z ( T )  = z(t0). 
Proof: The proof i s  obvious  from (8). vvv 

The mea.ning of the description “less de1a.y” should now 
be clear. For any common input  to  the  txo systems, the 
dissipat,ion responses have the same mean square  value 
(see (12)) but (11) shows t.hat the main part of the re- 
sponse occurs earlier for the first system  t,han  for the 
second. In  particular,  t.he syst>cm n-hose stored energy 
function is &(x) is a nzinimwn  delay syst.em. At. t.hc  ot,her 
extreme, the system whose stored  energy  is &(x) is  a 
rnmi.mum  delay system. 

For linear  systems, the concept. of “minimum  delay” 
act,ually turns  out t.o correspond wit.h the classical notion 
of “minimum  phase.” This special case has been previ- 
ously st,udied by rlnderson [l’i], in  the cont.ext of spectral 
factorization of power spect,rum  matrices.  Reference [ 1 7 ]  
also establishes t,hat  there is a sense in which the  term 
!Ln~axinmm phase” could be applied t>o maximum  delay 
systems, as defined here. 

111. APPLICATIOS TO OPTIK4L CONTROL 

A t.ypica1 problem  in  optimal  control theory  is  the 
following: 
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Given the system  equations 

3i. = f(z) + GU (13) 

where f( .) is  a  real  function of t.he  vector z possessing 
continuous  derivatives of all  orders, f(0) = 0, and G is  a 
constant  matrix, find a  control u(t) that will minimize t4he 
performance index 

V I  = lim ( n [ x ( T ) ]  + S O T  [E’(z)l(z) + u‘.u] d l }  (14) 
T -  m 

where n(z)  2 0 for all x. Wit.hout. substantial loss of 
generality, it  mag  be assumed that E(0) = 0 and n(0) = 0. 

The optimal  control will in general be of the form 

u* = -k(z)  ( 1 8  

and  the minimum  value of the performance index will be 
some function +(xo) of the  initial  stat.e zo. However,  it  may 
n-ell be  that,  there exist  many different funct,ions I(r), and 
correspondingly different. +(x), for which the same  control 
law (15) is  opt,imal. I f  the system (13) and  control Ian- 
(1.5) arc given, we shall  say that t,he  pair { + ( - ) , Z ( . )  ] is a 
solution to  the inowse problem if the performance  index 
(14)-for some nonnegative choice of n(z)-is minimized 
by (ls), the minimum  value  being +(xo). 

Necessary and sufficient, condit.ions for t.he exist,ence of a 
solut.ion to  the inverse  problem  have been given in [16].  
For linear  systems  with  linear  stat.e  feedback,  one  can  in 
fact  obtain extremely det.ailed results, the best-known 
results being those of Kalman [ l S ] .  However,  these 
references are primarily concerned wit,h obtaining  one 
solution t.0 the inverse  problem. A method of generating 
all solut.ions is indicated  in t.he follou-ing lemma. 

L e m m a  3: Suppose that  the system  equations (13) and 
control law (15) are given. Then a  pair { + ( . ) q l ( . )  1 is  a 
solution to  the inverse  problem if and only if $(.r) and 
Z(z) satisfy the equations 

V’+(X) V(E)  - +Gk(z)]  = -rf(x)l(~) 

+G’V+(z) = k(x) 

+(O) = 0 

and 

$(x) 2 0, for all x. 
Proof: 1)  Suppose {+(.),Z(.) } is known to be a  solution 

of the inverse  problem. Then k ( r )  is given [16] from 
standard Hamilton-Jacobi  theory as 

k ( z )  = +G‘V+(x) 

which shows that  the second equat.ion is satisfied. -41~0, 
[ l G ] ,  +(x) must. be a  nonnegative  solution of the Hamilton- 
Jacobi  equation  (in its limiting  form) 

V ’ $ ( ~ ) f ( r )  - ~V’+(E)GG’V$(X) + rf(s)Z(.r) = 0 

from which t,he  first  equation follows. 
2) Suppose that + ( E )  and I(x) are knon-n to satisfy  the 

above  equations.  Then  it is easily shown that, for any 
square-int,egrable u( - ), 

+ S O T  [u + k(z) l ’[u + L(z>] at. 

Sett.ing n ( x )  = +(x), the result follows. QVV 
In  view of Theorems 1 and 2, t.hese results  may be 

summarized  as follows. 
Theorem 4: A necessary and sufficient condition for  t,he 

existence of a solut,ion to  the inverse  problem  is that  the 
system 

3i. = f ( ~ )  - +Gk(x) + GU 

y = k ( x )  

be passive. If t.his condit,ibn is sdsfied,  then  there exist 
tn-o solut,ions { 4 a ( * ) : I a ( - )  1, and {4,(.).2,(.) 1, not neces- 
sarily dist,inct,, such that all other solut.ions { + ( . ) , I ( - )  1 
satisfy the const,raint 

+a(.) I + ( E )  I + T ( . T ) ,  for all E.  

117. SIXGULAR OPTIMIZATION PROBLEMS 

a further applicat,ion of the results of Section 11, 
consider the following problem: 
11-it.h x ( t )  governed by 

i = f(x) + G(x)u, ~ ( 0 )  = x. (16) 

find u( .) such that  the performance  index 
P T  

I.’, = lim J [l(.u) + W(x)u]’[l(s) + W(E).U] dt (17) 
T-c 0 

is minimized. In  addition to  the  state equat.ion (16), t.here 
may bo boundary  conditions on  x and possibly some con- 
straints on u. 

If W’(z)W(s)  is  invertible for all x ,  the solut.ion of the 
above  problem  is  relatively  straightforward. If, on the 
other  hand, W’(z)W(.z) is singular, most, st,andard  opti- 
mization  methods fail to find an opt.imal  solution. Al- 
though it is st.raight,forward t.0 establish  t>hat. the optimal 
cont.ro1 is bang-bang (that is! t,hc  control  attains its limits, 
or is  infinite if there  are no a. priori  bounds)  for  most 
values of E ,  *there  is t,he possibility of singular regions 
where the optimal  control  is  determined by  criteria inde- 
pendent of the bounds on u. The determination of t.he 
location of the singular regions in  the  state space is 
usually t.he most, difficult, step  in solving t.he above  prob- 
lem. 

For the purposes of this section, it  sill  be assumed t,hat 
there  are no a priori  bounds  on IC, and  that  boundary 
conditions for E have  not yet, been specified. That is, we 
wish to derive the optimal  controls for all possible com- 
binations of boundary  conditions. A sin.gular  region will 
then  be defined as  any region in  (x.u) spacp in which the 
optimal  control is finite. (This differs from  t,he  usual 
definition,  in  t.hat  t,he case where W’(z)W(x)  is invertible 
has  not been excluded.) Depending  on  t,he actual con- 
straints on 11 a.nd on the boundary  conditions, some of 
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these  regions ma.y not in fact enter  into  the  optimal solu- 
tion,  but  these considerations a.re most ea.sily handled 
after  the  singular regions have been located. 

An  obvious candidate  as a singular  region is the region 

Z(x) + W(x)u = 0. 

However, trajectories  in this region  may not ha.ve the 
property that  the  boundary conditions a.re met.  Moreover, 
the region may  be a trivial one, consisting only of the 
origin. To proceed further, i t  is  obviously  necessary to find 
all the singular regions, a.nd then  to exclude  those  which 
do  not meet the side constraints. 

In  the sequel, it. will be assumed that  the free system 

3i. = f(x), x(0) = x0 (18) 

is  asymptotically  stable. [Unst,able systems  can also be 
handled if i t  ca.n be  shorn  that tohere exists a  stabilizing 
feedback  control  law4 for the  origind  system (16). Sup- 
posing that t.his control is of the form - k ( z ) ,  a new  control 
can  be defined via 

u1 = u - k(x) 
and (16) and (17)  modified a.ppropriately.  This  does  not 
change the form of (16) or (17).]  With  this  assumption, 
define5  a. function +(x) via 

[where x(t)  is  governed by (18)], a.nd then define functions 
h(x) and J ( x )  as 

h(x) = +G’(x)V+(x) + W’(x)Z(x) 

J ( x )  = +W’(x)W(x). 

The significance of these  functions is shorn in the following 
lemma. 

Lemma 4: The system 

3i. = f(x) + G(x)u 

Y = h(x) + J ( 4 u  

is passive. 
Proof: From  the definition of +(x), i t  follows that 

0’4(x)f(x) = -Z’(x)Z(x) 
and  that 

+(x) 2 0, for all x. 
Equations (3) are  therefore  trivially satisfied, and  Theorem 
1 may  be applied. vvv 

A  number of singular regions may now be  derived as 
follows. 

Theorem 5: Wit.h h(x) and J ( x )  defined as  above,  let 
{+i(x),li(x),W,(x) 1 be any solution set of the  equations 

V’+,(x>f(x) = -&’(4&(x) 

cont.ro1 law to exist [16]. 
4 Controllability appears to be a sufficient condition for such a 

5 Boundedness of +(. ) needs t.o be explicitly assumed. 

+G’(x)V+j(z) = h(x)  - Wi’(x)Zt(~) 

W,’(x)W,(x) = J ( x )  + J’(x). (19) 

Then  the region 

l&) + W,(x)u = 0 , (20) 

is a singular region. 
Proof: By defining a new function 

d b )  = +(x> - 4 i b )  
the following set of equat,ions may  be  derived: 

V’&r)f(x) = zi’(z)l&) - Z’(z)Z(z) 
+G’(x)V&(x) = Wi’(x)Zi(~) - W ’ ( ~ ) l ( x )  

W,’(x)W,(x) = W’(x)W(x) .  

Then,  with z(t) given  by (16), 

- d[r(t)l = V’d(x)j(~) + V’d(x)G(x)u 
d 
a. 

for any u(t). With  the aid of the above  equations, this 
reduces to 

d 
- d[x ( t ) ]  = [li(x) + W,(x)ul’[lt(x) + W,(z)uI at 

- [ W  + rn(x>uI’[Z(x) + W(x)uI. 

Therefore, for any  times 4 and tl 2 to, 

LtL [Z(x) + w(x)ul’[z(x) + W(x>uldt = d[x(tdI 

- d [ x ( t J ]  + J“ [It(.) + Wi(x)u]’[li(x) + W ~ ( X ) U ]  dt- 
to 

Equation (20) is  therefore  a sufficient condition for opti- 
malit,y, provided that  the  boundary condit,ions are  such 
that  $[x(tl)]  is also minimized. It follows that (20) de- 
scribes a  singular region. vvv 

Note,  incidentally, that  t.he above  theorem holds 
whether  or not W’(x)W(x) is  invertible. If this  matrix is in 
fact  invertible,  then  the “singular region”  covers the 
entire  st,ate space, and  the solution for u reduces to  that 
found for nonsingular  problems. In  all  other cases, (20) 
can  be satisfied only in  a  subset of the  st.ate space. It is  felt 
that a  major  cont,ribution of t.his sectmion is t.hat  Theorem 5 
covers singular and nonsingular  problems  equally well, by 
considering nonsinguhr problems  in x space as “singular” 
problems in (r,u) space. 

V. TOLERANCE OF SECTOR  NOXLINEARITIES 

In this section we invest,igat.e the  stability of the-system 

W = f [ W  1 + G$ {k[x(O 1)  (21) 

where f ( - )  and k( e )  are known  linear or nonlinear  func- 
tions, G is  a lm0n.n matrix,  and $( .> is an unknown  non- 
linearity.  However, #(.) is partly  constrained  by  the 
conditions 
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u’[#(u)  - T U ]  2 [#(a) - T u ] ’ M [ # ( u )  - T U ]  + eu’u, 

for  all u f 0 (22) 

and 

# ( O )  = 0. 

In  the above  inequality, T and Jif are knon-n constant 
matrices, nith M nonnegabive and  symmetric,  and e is  a 
small positive  scalar  constant. 

In  the case of independent  nonlinearities, i.e., t.he jt.h 
component of # ( u )  depends only on  t.he j t h  component of 
u, we may  t.ake T and Jf to  be diagonal. The  inequality 
then reduces to a set of inequalit.ies of t,he form 

That is, the graph of #%(u)  as a  function of ut is known t.0 
lie in the sect,or bounded  by  st,raight lines of slope f i i  and 
t i i  + (l /mii) .  In  general,  t,hen, we call +(u)  a sector non.- 
linearity. 

The main  result  is as follows. 
Theorem 6: If the system 

1 = f(z) - G T k ( z )  + GU 

y = k(x) + Mu 
is passive and observable, then t.he system (21) is a symp 
tot,ically  stable. 

Proof: The condit.ions of the theorem inlply the ex- 
istence of {+(+),Z(-),W}, with +(-) positive definite, such 
that 

V‘+(X)~(X)  - V’+(z)GTk(z) = - Z’(X)Z(X) 
+G’V+(z) = k ( x )  - W’Z(z) 

AT + 111‘ = W‘W. 

With z(t) governed by (21), i t  follows easily t,hat 

’- = v‘+(x)f(x) - v’+(z)G$[k(x)] 
dt 

= - !I(.) - W + [ k ( x ) ]  + W T k ( z )  1’ {Z(X) 
- W # [ k ( x ) ]  + WTk(x)  } 
- 2 {k’(4 [# I w c )  1 - T W x )  I 
- [ # [ k ( ~ ) ]  - T k ( ~ ) ] ‘ d I [ + [ k ( ~ ) ]  - T k ( ~ ) ] i .  

The derivative is clearly nonnegative, so t,hat @(x) is a 
Lyapunov  function  establishing  stability for (21). More- 
over, the above  derivative  can  never  be  identically zero 
along a. nontrivial  trajectory, for  by the inequality (22) 
this mould imply that k(x) 0 along the same trajectory; 
this possibility is ruled out  by observability. It then 
follows [19] t,hat 

lim + [z(f)] = 0 

which is sufficient to  prove  asymptotic  stability. VVV 

f-+ = 

VI. CONCLUSIONS 

The central  point of  Ohis paper is of course, Theorem 1. 
Here, it is shonm that passivity of a  certain class of sys- 
tems is equivalent to the existence of a state function 
+(x) satisfying  a set of well-defined equations. The sig- 
nificance of t.his t,heorem is that  the input-output property 
of passivity  may  be  replaced  by  a set. of const,raints  on the 
internal structure of a  system. The interpretat,ion of +(x) 
as a.n energy  function is in a sense a secondary  issue, but 
it allows some useful insight,s into  the meaning of Theorem 
1. 

As with the more general storage  functions of Willems 
[4], [14],  it turns  out t.hat,  t,he  stored  energy is nonunique; 
this implies, among other  things,  that when one is inter- 
ested in computing  internal  energy t.he state equations 
provide an incomplete  description of a system. Consider 
for example t.he w r e  of linear systems. It is natural  to call 
two  systems equivalent [20] if t.heir state vectors x( t )  and 
P ( 1 )  a.re such that .?(t) = Tz(t)  for all t ,  for some invertible 
matrix T .  Supposing that  the stored energies for the t.mo 
sptems  are given by x‘Px and .?’$.?, then it, is not neces- 
sarily true  that, P = T’PT. This conclusion has a natural 
and fairly  obvious  physical  int.erpretation  in the case of 
electrical networks, but t.he implications for more general 
control  systems are  not ent,irely clear. It would be of 
considerable interest  to develop a  theory of control sys- 
tems which t,ook account of t,he differences between 
different systems having the same state equat.ions. 

The applications list.ed in  Sections 111-V are int,ended 
only as a brief survey;  it is clear t,hat.  one could obtain 
stronger or more general results for the problems men- 
tioned in these  sections. For example, the Lyapunov 
function of Section T‘ could be  augmented  by  an  integral 
term involving the unknon-n non1inearit.y (as x a s  done in 
[ 11 I), with a corresponding increase in generality of t,he 
system of Theorem 6. Another area where the theory 
shows promise is in the s>-nt,hesis of nonlinear elect,rical 
networks; the concepts of stored and dissipated  energy are 
readily  translat,ed int,o physical terms,  and  the only  real 
problem is  to determine hon- t,he net,n-ork e1ement.s should 
be interconnected. Yet, anot.her  application is in problems 
involving the stabi1it.y of int,erconnected systcms-t.he 
rvork of Zames [3] is especially relevant here. The precise 
details  in  these last. two cases still  remain to be worked out. 
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Autonomous  Periodic  Motion in Nonlinear 
Feedback  Systems 

ERIK J. L. NOLDUS 

Abstract-Sufficient conditions are presented for the  existence of 
periodic motions in a  class of autonomous, time-invariant,  non- 
linear feedback  systems.  The conditions can be interpreted as circle 
type  criteria, stated in terms of the  frequency  response and  root 
locus diagrams  for the system’s linear part,  and in terms of the 
characteristics of the nonlinearity. 

T 
I. INTRODUCTION 

HE present  paper  is concerned with  establishing the 
existence of nontrivial periodic solutions,  for the 
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diff erontial  equation of an autonomous,  t’imc-invariant, 
nonlincar fwdback  system. While a  general  thcory of non- 
linear oscillations is  available  for  second-order  systems, 
whcre analyt,ical-t’opological methods  may be applied very 
nicely, thr problem  remains a challenging one  for  systcms 
of order  higher than t.wo. For  its  solution, only a few basic 
principles  can  bc  found  in the textbooks.  Truly, some 
result’s of this kind,  for specific cases of third-order sys- 
t,cms,  have  been known for  a  relatively long time,  one 
much citcd  rxamplc  by  Rauch [l] going back  as  far as 
19.50. Other  examples can bc  found  in the Russian  litera- 
ture [ 2 ] .  It srems difficult however t,o dcrivc  a  simple 
crit.rxrion that applies to the casc of a general  system of 
order 7 1 ,  containing an arbitrary nonlinear  amplifier. 


