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Fig.  2. 

T.ll3LE I 

Time of Pulse  Initiation (see) and 
Pulse Polarities in Parentheses 

Number Case 1 Caze 2 Case :3 
Pulse 

2 O..iOO ( -  ) 
1 O . O O O ( - )  

3 1.000(-) 
4 1.806(+) 
.i 2.306 (+) 
6 2 .806(+)  
i 3.306!+) 
8 S.S06(+) 

10 4.806(+) 
9 4.306(+) 

11 5.434 ( - )  
12 5.934 ( - )  
13 6.434 ( - )  
14  6.934(-) 
1.5 7.434 ( - )  
16  ’7.934 ( - )  
l i  S.434 ( - )  
18 8.800 (+ ) 

20 9.800 (+ 1 
19 9.300 (+ ) 

Case 3: -4 cost is applied on pulses and a is equal to 0.1, Fig. 2. 
The po1arit.y and  time of initiation of pulses constitut.ing the optimal 
control u( t )  for these cases are given in Table I.  

It. is noticed that., in Case 1, the dead t.ime between the pulses 15 
and 18 is less than  the allowable minimum dead t.ime, ahile in Case 2, 
the dead time betn-een any t.0 adjacent pulses is equal to or greater 
t,han the required minimum. In Case 3, the spacing betn-een pulses of 
opposite polarities is relatively large because the cost involved pro- 
hibits pulses %-hen the magnitude of P(t )  is small: consequently, it is 
irrelevant m-hether or not a dead time is required between adjacent. 
pulses of different polarities. 

The values of Z*(u)  obtained for the  three cases are -0.Q.31, 
-0.0365, and -0.0359, respect,ively. Kote that the estemum of 
Z * ( r c )  is decreasing as constraints on the control function are added. 
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On-Line Steady-State Control of a Synchronous 
Generator 

PETER J. WORTLEP AXD PETER J. niOlZ$N 

Abstract-Excitation control of a  synchronous generator is dis- 
cussed. Linear systems theory is used  to  derive a simple  feedback 
formula. 

In any att.empt. to  apply optimal control t.heory to a  physical 
system, the fimt. step is to obt.ain the st.ate equat.ions. For a s~m- 
chronous generator  these  equations are quite complex with the result 
that  the opt.imal cont.roller is also likely to be quite complex. This 
not,e describes a  method by which linear  optimal conlrol theory  may 
be applied to  the problem of machine cont.rol, in  such a way that a 
relatively  simple  controller is derived. 

A mathemat.ica1 model for a salient pole synchronous generat.or 
was derived by Park [I] and subsequently used by others [2],  [3]. 
The description is by nonlinem differential equations. In  order to  
be able to apply results from linear  systems  theory,  these  equations 
can be linearized for small  disturbances  about. a given operating 
condition. The equations depend of course on the  operating  point. 
Such an approach  is useful for the  steady-state  stability analysis of 
the machine ahere only  snlall changes from the operating  point 
need be considered. 

If we consider the system  operating  under steady-state conditions 
with  constant mechanical input power (i.e., there  are no small 
changes ‘n input. power) then  the machine can be described about 
that operat.ing point. by a time invariant linear 3 X 3 matrix syst.em 
relating  a change in t.he field voltage (As,,) as input. to changes in 
t.he st.ate variables  torque angle ( 3 ) .  time derivative of torque angle 
( G ) ,  and terminal voltage ( A c t ) .  Under t.hese conditions the stat.e 
equations can be derived and are given by 

x = FX + Gu 
ahere 

Cl, C3, C,, Cj, and Cj are dependent on the point about which linear- 
ization is performed. C2 and Cs are  constant for a particular machine. 

O p f i n d  control theory for linear systenls cat1 he applied to t.he 
linearized system. This  require  the solation of a matrix Rircati 
equation to determine the optimal feedback gains. However, if the 
machine is t o  be controlled in this way under all operating conditions 
the variations in the F and G matrices necmitate solving the Riccati 
eqrlat  ion at each operating  point. 

Such a process is difficult. to accomplish on-line in either a digital 
system or an analogue system,  mainly because the Riccati equation 
requires more time  to solve than can be retuonably allowed. 

One solution to t h w  problem is to store the gains for every  operat- 
ing point of the machine [4 ] .  Belorr, we indicate a simpler method. 

If the  state variable I is subjected to a time invariant  transforma- 
tion f = TI, n-here 

0 0  
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then  the  system is put  into canonical form 

i = PB t?Avta 

where 

and 

- 013 ‘I 
011 = cIc6 - c3c4 
Ctz = c2c6 - Qc5 - e1 
0 . 3  = -(G + Cb). 

Here, and a2 are functions of the operating  point (a1t.hough they 
are constant a t  any given operat.ing point,), and a3 is  a  const,ant. 

When a system is in canonical form it is t.hen possible t,o stipulat,e 
the eigenvalues of the sta_bilized system 1.51 by not.ing that the 
closed-loop system  matrix, F E  is given by 

= - && 

where R is the feedback gain matrix. 

such that 
By  arbitrarily choosing an initial set of feedback constants BI 

&I = (-a,, -012,O) 

then  the closed-loop system matrix is given by 
* A  Pel = F - G(-?l, -012, 0) 

=p ; ‘I. 
0 0 -013 

This intermediate  system is completely controllable, completely 
observable, and has  constant eigenvalues 0, 0, -013, independent of 
operating point.. 

Stabilization of this system is ~t~raightfohard and can be achieved 
either by solution of a  matrix  Riccati  equation or by simple choice  of 
eigenvalues to yield a further  feedback gain matrix & given  by 

ri, = (kl, kn, k3). 

& will be constant for all operating  points of the machine and i d i l l  in 
effect determine the response of the machine. 

Thus a closed-loop system  in canonical form is obtained which is 
known t,o be stable. 

F c  = P C ,  - Q B z  

0 1 0  

= [ o  
0 1 

-k1 -kz --(a3 + k3) 1. 
Relating  these results to t.he original system by performing an in- 

verse transformation yields a feedback gain mat.rix K and a closed- 
loop system  matrix F, given by 

F c  = [P - GK] = T-IPcT 

1 0 1  

The eigenvalues of F ,  are of course t.he same. as those of PC so the 
system is stable. 

is dependent on t.he operating  point of the machine but can be 
hardware  implemented and t b u s  used as an on-line stabilizing feed- 
back law for the machine. 

Note t.hat t,he final system may  not be “optimal” in the normal 
sense. However, stability  is ensured and  the  type of response de- 
sired can be stipulated. 

Further  it is not necessary to  use t.he s t i t e  vector as given above 
for the machine des-ription since all descriptions should reduce to  the 
same canonical form by h suit.able linear  transformation T. 
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Eigenvalue Control in Distributed-Parameter Systems 
Using Boundary Inputs 

SPYROS G.  TZAFESTAS 

Abstracf-The feedback eigenvalue  control problem of dis- 
tributed-parameter systems  subject to boundary inputs is solved 
and  restllts  are derived for both single-eigenvalue and multi-eigen- 
value  assignment. An illustrative  example is ixicluded. 

I. INTRODUCTION 
The eigenvalue control problem has received much attention in 

recent  years [1]-[5]. The  majority of t.he results concern the case of 
lumped-parameter systenis. Our aim here is to  solve the eigenvalue 
cont.ro1 problem of dist.ribut.ed-parameter s-ystems from t.heir bound- 
aries. The approach is based on t.he Green’s .dentity.  The results are 
useful since  in most cases the control of prnct.icnl  dist.rildut,cd-param- 
eter systems is effected from the boundary surfaces rather  than t.he 
interior of the occupied spat.ia1 domains. The  theory is illust.rated by 
means of a  simple example. 

11. THE BOUNDARY  EIGENVALUE CORTROL PROBLEM 

Given a  scalar system defined over  an n-dimensional spntial 
domain D with boundary surface 60, 
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