
TECHNICAL NOTES AND CORRESPOXDENCE 

TABLE I 
~IETHODS OF AVERAGING SIKGLE~TAGE ESTIMATES 
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Type of Average Summat.ion Form Recursive Form 

l k  
St.raight *verage 

k - 1  1 
k p k  = - & 

k l  = k p k - 1  + - $kj PO = 0 

Fading-Memory Average 
(B < 1) 

TS‘eight.ed Average 

Faded-Memory  Weighted Average 
(B < 1) t 

C B k - i f f i  
1 

following four  candidates are proposed;  formulas  for the smoothed 
esthates  are given in Table I. 

1) Straight  Averaging: This is t.he analog of (5 ) .  
2) Fading-Nemory  Averaging [6] : This all on^ t,racking of a slowly- 

varying p ,  and helps t.0 discard poor estimates  that develop early in 
the estimation proces when the i?k are poorly known. 

3) Weighted   herage:  The weighting coefficients in the average are 
chosen to minimize the  variance of pi:, assuming the try; to  be un- 
correlated, a situation which, hopefully, occurs once p has been 
satisfact.orily identified. 

4) Fading-Memory  Weighted  Average: Fading memory is in- 
corporated  in t.he weighted average using Sorenson and Sacks’ 
approach [ 131. 

APPLICATION TO FADING-MEXORY FILTERING 
These algorithms may  be used to  adapt,ively choose t.he fading 

fact.or in the faded-memory K h a n  filter [12] by taking 

A b  = H k Q k - l H k ’  + R k  

Pok = H + g 4 - 1 Z i : - 1 A k - 1 ’ H k ‘  

and p as t.he fading factor. 
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A Note on Kalman-Bucy Filters with Zero 
Measurement Noise 

P. J. MOYLAN 

Abstract-The limiting form of the Kalman-Bucy a t e r  as mea- 
surement noise tends  to zero does not, in general,  correspond to  the 
optimal a t e r  derived assuming zero measurement noise. This may 
be considered to  be  due  to a  difference in initial conditions. 

A standard problem  in  linear filtering theory is the following: 
given t.he process equat,ions 

d t )  = Fz(t)  + &(t )  

y ( t )  = H ’ d t )  + v ( t )  

where ~ ( t )  and v ( t )  are sample  functions  from independent Gaussian 
whit.e noise processes, find a filter  generating the conditional  mean 

3%) = E [ Z ( t ) l Y ( T ) ,  to < 7 6 tl .  

It is assunled t.hat s(t0) is  a  Gaussian random variable, of zero mean 
and known covariance Po, and  t.hat  the noise covariances are also 
given as 

E [ U ( t ) U ’ ( 7 ) ]  = &6(t - 7) 

and 

E[U(i)v’(T)]  = R6(t - T ) .  

If the nlat.rix R is positive definite, the solution is simply a Kal- 
man-Bucy filt.er [ 11. If R is singular, however, the problem becomes 
more  complicated. In  the  particular case where R = 0, there  are a t  
least. two plausible approaches. 

1) &suming R = ERR, with RO any positive definite mat,rix, and e 

a  positive  scalar parameter, write down the equations for the Kal- 
man-Bucy filter; then t.ake t.he limit as e + 0. This approach  is im- 
plicit in, for example, the treat.ment. of Kwakernaak  and Sivan  [2]. 

2) Difierentiate the measurement process y ( t ) .  At least in t,he case 
where H’GQG’H is nonsingular, the new measurement vector C( t )  
will contain a nonsingular white-noise component,, and again a 
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Kallman-Bucy filter may be nsed. This approach has been studied 
by Bryson and  Johansen [3]. 

In  this note it is  shown that these t.wo approaches  do not lead to 
the same answer. In  fact,  the limit as e -f 0 for case 1)  is not well- 
defined--there appears t.o be a discontinuit.Jr in the solution at  E = 0. 

Consider first the case where R = eRo. The optimal filter is 
described [ 11 by t.he st.ate equat,ions 

d t )  = F i ( t )  + K&)[y ( t )  - H ' i ( t ) ]  

where 

and 

P,(t) = E{[r ! t )  - f(t)][r(t)  - ? ( t ) ] ' ]  

is the error covariance. The precise form of P C ( [ )  is of no  importance 
here (it may bc determined by solving a ILiccati equation),  but m-e 
note  that 

P,!to) = Po 

for any e > 0. This inlplies that. 

1 
K,(to) = -~ PaHKo-1, 

e 

If Po is noneingular-as is usually the case-then jlK,(toi)( will 
increase m-ithnut limit. as E + 0. (It will normally also be true  that 
K , ( t ) ,  for any t > to, contains unbounded ent.ries, but  this is more 
difficult to prove.) The limiting case t.herefore fails to  have a solut.ion, 
except  in the sense that  the optimal filter contains infinite feedback 
gains. 

Consider now t.he case where K = 0. The measurement proces 
now contains no white noise component, being given by 

y(l) = H ' d t ) .  

However, the same  information is gained by  measwing zj(t, ,  t.ogether 
with ? / ( t o ) .  Formally, 

y(L) = H,'r(t.) f n1( t!  

where H1 = F ' H ,  and a l ( t )  is  a zero-mean Gaussian process with 
covariance 

E [ t ' l ( f ) 2 ' 1 ' ( T ) ]  = H'GQG'Ha(t - T )  

A R?a(t - 7 ) .  

r\t least in the case where R1 is positive definite, a standard Kalnmn- 
Bncy filter may be derived I::]. The precise details are not important 
for our present. purposes;  it suffices to  note  that  there  esists an 
estimator of the form 

2 0 )  = F f ( t )  + k'(t)[G(t) - HI'.?(!)] 

with K ( t )  m-ell-defined and ronhuous  for all t > k. The need for the 
differentiation may be avoided b; defining a nem- filter state 

z i t )  A ? ( t )  - K(t)y(t , .  

The filter equations are  then 

i ( l )  = [F - K ( t ) H l ' ] Z ( t )  + [FK(t!  - K(t)HI 'KV) - B(t)]IJ(t)  
and 

?( t )  = z ( t )  + K(t)IJ(t). 

X number of further simplifications are possible. The main point, 
however, is that  the optimal estimate is generated by a filter whose 
internal gxirls are all bounded. The filter cannot therefore be equiva- 
lent, it1 any but a restricted sense, to  the limiting case of the &I- 
man-Bwy filter as the measurement noise tends  to zero. 

The essential difference between the two problems is in t.he initid 
state  estimate.  For  the case of no  measurement noise, this is given by 

: ( t o )  = E[dfa)ly(to)l 

and it. is easy to  shox  that t.his is in fact. 

where ( )+ denotes  a pseudo-inverse. For the Kalman-Bucy fllt.er, 
on the  other hand, y(t0) contains no useful  information, since it is a 
point  sample  from a random process containing a nonsingular white 
noise component. The best  initial est.in1at.e is therefore  simply the 
a priori espectat,ion of the initial  stat.e, which is zero. 

On physical grounds, one would expect the  estimates ?( t )  from 
the two filters to approach each other  with probabi1it.y one;  it is t.hen 
resonable  to expect. a large  initial transient in t.he low-noise Kalman- 
Bury filter, as f ( t )  is in effect. adjusted from  a poor initial  est.imate to 
a  more accurate  state  estimate.  This would account  for the un- 
bounded filter gains. 

It is interest.ing in this connect.ion to n0t.e an  apparent.  discrepancy 
between the results  outlined  above and  those of [3]. The  authors of 
[3] report a  disc0ntinuit.y in f(t)  at. t = to, but  the  above analysis 
shows no such  discontinuity. The difference,  again, is in  t,he initial 
conditions: Brpson and  Johansen [3] assume that. y(to) is unavailable 
for measurement., so that (1 )  map not. be used. On the  other hand, 
they  do derive an expression similar t.o (1) for i ( f o ' ) ,  so that t.he 
discrepancy is more apparent  than real. 
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Optimum Measurements for Estimation 
K. I>. HERRIICG ASD J. L. lIELP.4 

Absfract-This correspondence considers  the  class of estimation 
applications in which a choice of measurement  devices is possible. 
A cost is  associated with each  measurement device. An optimization 
procedure is  presented which minimizes the  measurement  cost 
while maximizing estimation accuracy. 

1. INTRODECTIOS 

In  many estimabion applications, t,he nleasurement or observation 
model is specified except for certain parameten  The  optimal selec- 
tion of such parameters  has been  invest.igated by several authors 
(11-[3]. In a special case of this general problem [4], these param- 
eters represent  switching  functions  which, when optimized,  deter- 
mine which single measurement. device  should be used at  each in- 
stant of time  during  the measurement interval  to achieve the best. 
estimation  results. This correspondence generalizes these  results to 
allow the selection at  each instant of time of the best  combination of 
devices, as opposed to  the beet single device. 
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