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Invert again the resulting matrix to remove two serial capaci- 
tances and after a last inversion apply a new decomposition of 
the admittance matrix to get finally a bridged-T network. [41 

For the matrix b a single inversion gives a T-network. The 
resulting network is given on Fig. 1. Note that the number [51 
of elements of this synthesis is 13, i.e., 2%percent less than in 
the synthesis proposed by Lucal. [61 

If we had chosen an alternate optimal solution X0,, = [71 
(31/36, 1, 1) we whould have obtained a synthesis with 15 ele- 
merits, i.e., 17-percent less than in Lucal’s synthesis. 
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Preliminary Simplifications in State-Space 
Impedance Synthesis 

P. J. MOYLAN, MEMBER, IEEE 

Abstruct-State-space techniques for impedance matrix synthesis can 
be difficult to apply when the prescribed impedance matrix Z(s) iS such 
that Z(m) + Z’(m) is singular. Here this problem is overcome by a 
sequence of preliminary lossless extractions. In the case of lossless 
networks, the procedure reduces to a multiport Cauer synthesis. 

I. INTRODUCTION 

I 
N RECENT YEARS, it has become clear that synthesis of 
linear passive networks, in particular multiport networks, 

may well be handled more conveniently by state-space meth- 
ods [l] than by the better known classical frequency-domain 
methods [2]. The basic difference between the two classes of 
methods is that the classical approach seeks a direct synthesis 
of a prescribed immittance matrix Z(s), while the state-space 
approach seeks instead a synthesis of the dynamical system 

i=Fx+Gu 

y =H'x +hl. 0) 

The matrices of (1) are related to Z(s) by 

Z(s) = J + H’(sZ - F)-’ G. (2) 
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Moreover, the computation of these matrices from Z(s) is a 
relatively straightforward procedure (see, for example, [l]). 

Virtually all of the state-space synthesis methods rely ulti- 
mately on the following lemma [3], [4]. 

Lemma: Suppose that (1) is a minimal [5] realization of 
Z(s). Then the system (1) is passive (equivalently, Z(s) is 
positive-real), if and only if there exist real matrices P, L, and 
W, with P positive definite, such that 

PF+F'P=-LL' 

PG=H-LW 
w'w =JtJ’. (3) 

The key element in synthesis is the solution of (3). (A num- 
ber of solution methods are surveyed in [l] .) However, the 
equations can be difficult to solve if (J + J’) is singular, which 
tends to negate the basic simplicity of the state-space ap- 
proach. The equivalent problem in frequency-domain terms is 
when Z(m) + Z’(m) is singular, but this does not normally 
cause difficulties in classical synthesis procedures. 

The procedure to be described below achieves a synthesis of 
a network of the form (l), with (J t J’) singular, by deriving a 
new network for which (J + J’) is nonsingular. In effect, it is a 
state-space version of the Foster preamble to classical synthesis 
techniques [6, ch. lo], in that a number of reactive elements are 
removed in order to simplify the network. In actual detail the 
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procedure in many ways resembles a multiport Cauer syn- 
thesis [2]. The key step is an inversion of the system to be 
synthesized, so that a zero at infinity becomes a pole at in- 
finity; this is then followed by a reactance extraction. 

II. THE SYNTHESIS ALGORITHM 

In what follows, it is assumed for simplicity of exposition 
that u is a vector of port currents, and y is a vector of port 
voltages. In other words, Z(s) is an impedance matrix. The 
ideas apply equally well to admittance matrix synthesis (and 
also, with some modifications, to hybrid matrix synthesis) if 
one makes the obvious changes such as “series” to “parallel,” 
or “shunt capacitor” to “series inductor.” These will not be 
indicated explicitly. It is important, however, to keep track 
of whether the ports are-assumed to be voltage or current ex- 
cited. The actual algorithm follows. 

1) Gyrator Extraction: Define 

?= +(J+s) 

and 

v^ =H’x +&. 

Then 

y =y^ t 3(J - J’)u. 

The second term may be synthesized using transformer- 
coupled gyrators [ 1, ch. 81 ; these are then placed in series 
with a new network (to be derived) with input u and output 9. 
Now drop the superscript hats. 

2) Transformation of Port Variables: Find a real orthogonal 
V such that 

J= V’ 
Jl 0 [ 1 V 
0 %XP, 

with J1 nonsingular and symmetric. Define 

u^= vu y^= vy. 

The new network may be synthesized as the cascade connec- 
tion of a multiport transformer of turns ratio V, and a new 
system 

jc=Fx+tu^ 

jT=ii’x +J^; 

e=GV’ fi=HV’ J^= JI 0 [ 1 O OPIXP, . 

Now drop the superscript hats. 
3) Elimination of Redundant Ports: With p1 defined as in 

the last section, partition G as 

G= [G &I 
where Gz has pr columns. If the columns of G2 are linearly 
independent, proceed to the next section. Otherwise, there 
exists a nonsingular matrix V, such that 

G2V2 = @2 Onxpl 
where n is the dimension of the F-matrix, and 

p =pl - rank (G,). 

Introduce the transformer (of turns ratio matrix V-l) de- 
fined by 

r^= v’y u^= v-‘u 

where V is defined as 

The new state equations are now 

i=Fxt% 

9 =2x t.?; 

with 6 = GV, fi = HV, and .?= V’JV. Actually, these matrices 
are of the form 

6 = [G, G2 OnXp] ifi= [HI Hz Hs] 

J1 0 0 

?= 0 0 0 [ 1 . 

0 0 0,x, 

A key observation at this point is that the transformations 
used so far have not changed the passive character of the net- 
work. Consequently, the lemma may be applied, and this 
yields easily 

H3 =O. 

Let the new port variables be partitioned as 

where u2 and y2 correspond to the last p-ports. The state 
equations are now 

i=Fx + [G, 6,] ul 

YI = WI Hzl'x + 
Jl 0 [ 1 Ul 
0 0 

Y2 =o 
which implies that the last p-ports may be realized as short 
circuits. From this point onwards the last p-ports are dropped 
from consideration; u and y are redefined to be ul and yl . 
Similarly, the matrices G, H, and J are redefined in the ob- 
vious manner. 

It may be noted that the last two steps have resulted in the 
cascade connection of two multiport transformers. The final 
p output-ports of the second transformer are to be terminated 
with short circuits, while the remaining output-ports will be 
terminated with a network yet to be derived. (One could of 
course combine the results of these two steps to yield a single 
multiport transformer.) 
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4) Reactance Extraction: If the new J-matrix is nonsingular, 
the remainder of the synthesis proceeds as in conventional 
methods [l] . If, however, J is still singular, then J and G will 
be of the form 

JI 0 
J= [ 1 0 0,x, 

G= KG &I 

where (by virtue of the preceding steps) the 4 columns of G2 
are linearly independent. There exists therefore a nonsingular 
matrix Tl such that 

TIG= 

I;Rt a new state vector be defined as 2 = Tlx. Also define 
F = T1 FT;’ , c = Tl G, and 2 = (T;‘)‘H, so that the state 
equations are now 

,“=iGt& 

y =fi’; + Ju. 

The lemma -may now again be invoked to _deLive a special 
property of H. With the same partitioning as G,H has the form 

where it turns out that Hd is nonsingular (and, in fact, sym- 
metric). It follows that the matrix T2, defined as 

I 0 
T2 = [ 1 H;, Hi 

is invertible. 
A further transformation of the state vector may therefore 

be defined via x^ = Tz?. Now let the state vector and both port 
variables be partitioned as 

where the partitioning is such as to isolate the last 4 entries of 
each vector. With conformable partitioning of the coefficient 
matrices, the state equations turn out to be of the form 

[Z:] = [El: 211 [::I + E:: CI [::I 
[::1 = [“,;’ 5’1 I::1 + [“d 3 [::I 

where C is a positive definite symmetric matrix. 
The crucial step is now to define a new set of port variables 

I:] = [::I and [;j = [u2 “h,l . (4) 
The physical significance of this transformation is that the 

+ + 

-f- 

:;+I 
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Fig. 1. Reactance extraction. 

have in effect been switched). At the same time, a shunt 
capacitor C-actually a multiport transformer terminated by 
capacitors-has been extracted, as shown in Fig. 1. The state 
equations of the remainder of the network are readily seen to be 

.il = [F,, - GllJ;‘H;,] xl 

+ [GrrJi’ F12 - GllJilfGII 

-Ji’H; 1 
CG2IJi’H;l - CF21 

I 
x1 

t 
-Ji’HhI 

I CG’2IJi’H~l - CF22 * 

With the appropriate redefinitions of the various matrices, 
these equations are again of the form 

z?=Fx+Gu 

y=H’x+Ju. 

Moreover, it follows easily from the lemma that the new sub- 
system may be synthesized using only passive components. 

If the new J-matrix is nonsingular, no further transforma- 
tions need be made. If J is still singular, one simply repeats 
the entire procedure, starting again from step 1). The process 
must eventually terminate, since each pass through the “loop” 
will either cause the number of ports to diminish step 3) or 
will reduce the dimension of the state vector [step 4)]. 
Eventually, either one of these dimensions will shrink to zero, 
yielding a complete synthesis, or a nonsingular J will be en- 
countered. An interesting special case is where the network to 
be synthesized is lossless. It may readily be verified that in 
this case the procedure does not terminate until the dimension 
of the state vector shrinks to zero, so that a complete synthesis 
is obtained. The resulting network resembles that obtained by 
the first Cauer synthesis [2, ch. 71. 

One word of caution is necessary here. If the original net- 
work to be synthesized represents an impedance matrix, then 
(4) will change the problem to that of realizing an admittance 
matrix. When step 4) is applied a second time, the “shunt 
capacitors” will in fact become series inductors, and a number 
of other similar changes will have to be made. This will cause 

impedance matrix has been inverted (i.e., the roles of u and y no difficulty, but it does underline the necessity of keeping 
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track of whether a given port variable is currently assumed to 
represent a current or a voltage. 

III. CONCLUSIONS 

Given a set of state equations representing an electrical net- 
work, it is intuitively clear that synthesis will be simple pro- 
vided that aII elements of the state vector represent inductor 
currents or capacitor voltages. If this condition does not hold, 
it is desirable to find a transformation of the state equations 
such that the new state vector satisfies the condition. Such a 
transformation may easily be found [l] when the solution P 
of (3) is known; in this paper, the transformation has in effect 
been found without solution of (3). It is apparent that the 
methods of this paper work precisely when (3) is difficult 
to solve. 

The techniques discussed here may actually be used to solve 
these equations. To see this, note that step 4) of the algorithm 
uses a change of variables of the form x^ = TX; it is easily 
shown that this induces a corresponding change P ; T’?T in 
(3). A straightforward calculation then shows that P is block 
diagonal, with one.of the blocks a known quantity. Each time 
step 4) is applied, a further block of P becomes known. When 
(J + J’) ultimately becomes nonsingular, the remaining un- 
known components of P can be found by solving a reduced- 
dimensional form of (3). 

It is of some interest to note that the synthesis procedure 
leaves open a number of options. To see this, suppose that 

Z(s) is the immittance to be synthesized, and that Zl (s) is the 
immittance obtained (with Z1 (a) nonsingular and symmetric) 
after the lossless extractions of Section II. Then the following 
may easily be verified. 

1) A synthesis of Z(s) with the minimum possible number 
of reactive elements follows from a synthesis of Z,(s) with 
the minimum possible number of reactive elements. 

2) A synthesis of Z(s) with the minimum possible number 
of resistors follows from a synthesis of Z,(s) with the mini- 
mum possible number of resistors. 

3) If Z(s) is symmetric, then so is Z,(s), and a reciprocal 
synthesis of Z(s) follows from a reciprocal synthesis of Zl (s). 

In consequence, the procedures of this paper may be used as 
a preamble to minimal-reactive, minimal-resistive, or reciprocal 
syntheses, without prejudice to the aims of these syntheses. 
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Active R,C n-Port Network Synthesis Using 
Nullators and Norators 

I’. A. RAMAMOORTHY, K. THULASIRAMAN, MEMBER, IEEE, AND v. G. K. MURTI, SENIOR MEMBER, IEEE 

Abstract-A new method of synthesizing active RC n-port networks 
using nullators and norators is given. The method based on the reac- 
tance extraction principle uses a minimum number of grounded capaci- 
tors and gains its importance from the fact that the synthesis procedure 
does not depend on any topological considerations. A bound on the 

tiary Y(s) matrix is obtained. 
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I. INTRODUCTION 

T 
HE USE of nullator-norator pairs as the active building 
blocks in active RC network synthesis is well known. As 

an ideal transistor and an operational amplifier can be approxi- 
mated by a nulIator-norator pair [ 1 ] , much interest has been 
shown in analyzing [l] -[4] and synthesizing [S] -[8] with 
nullators and norators as a prelude to the analysis and synthesis 
of networks containing resistors, capacitors, and transistors 01 
operational amplifiers. In a recent paper, Yarlagadda and Ye 
[9] present a method of synthesizing networks with resistors, 
capacitors, and nullator-norator pairs which heavily depends on 


