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Nonlinear Regulator Theory  and  an  Inverse 
Optimal  Control  Problem 

PETER J. MOI’LAS AND BRIAS D. 0. ANDERSOS 

Abstract-Nonlinear optimal regulators are discussed, and  some 
useful properties are isolated. An inverse problem of nonlinear 
regulator design is posed and solved. 

A 
I. IXTRODUCTIOX 

STROSG  motivation  for designing optimal system 
is that such q-stems  tend  automatically to  have 

properties that  are dosirable from  the vic\vpoint of 
classical criteria:  stability,  reduced  sensitivity to  param- 
eter  variations,  and  many  other  such  properties. In  par- 
ticular,  it  is \wll-known [I]  that if the linear timeinvariant 
single-input system 

k = Fx + gu. (1) 

is opt.imized n-ith respect to   the performance  index 

J (u2 + x’Q3:) dt 
t o  

t,hen. under mild  restrictions  on Q! the resulting  feedback 
system is a ‘Lgood”  system  by  most classical criteria. An 
equa.lly significant  result  is as follom [2] .  Given a feedback 
control 1a.n- 21 = -X-’.? for the  system (1): \vhich is I;nou-n 
t o  yield an  asymptotically  stable closed-loop system,  then 
a necessary and sufficient condition  for  this  control  law 
to  be  optimal  with respect t o  a performance  index of the 
type (2) is that. 

1 1  + k y j d  - F )  -IBj 2 1 (3) 

hold  for all real w. This  is  the so-called “return difference 
condition,” \ d l  kno\vn in classical control  theory as a 
desirable  condition  on a linear  feedback  control q-stem. 
The purpose of the present  paper is t o  present  correspond- 
ing  results for a class of nonlinear  systems. We restrict our- 
selves to  tinwinvariant systems,  most  frequently  with 
time-invariant  control l a w .  With  greater  notational com- 
plexith- and n-ith man>- more ad hoc assumptions.  princi- 
pally  in  respect t o  existence of double  limits.  time-var?-ing 
systems  may be considered. and obvious  gen(~ra1izations of 
the time-invariant  results n i l1  be obtained. 

We do  not!  however, restrict  consideration to  single- 
input  systems.  Other  results  on nonlinear  inverse optimal 
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control  problems can  be  found  in  [3]  and [4]. In  [3]? more 
general  perfornmnce  indices are considered than  those of 
this  paper (n-hich are  quadratic  in  the  control,  but  not 
necessarily the  state)!  but  on  the  other  hand,  the  main 
results are  restricted to  systems possessing an  optimal 
performance that is quadratic  in  the  state.  In  [4], some 
structural  properties are determined  for  the  optinlum con- 
trol law of a problem of the class considered  in this  paper. 

11. SOLUTIOS OF THE DIRECT PROBLEII 

Consider the  system 

k( t )  = f [ x ( t ) ]  + Gu.(t) (4) 

where 3: and u are!  respectively! the  system  state  and con- 
trol  and  take  as a performance  index 

I’[z(fu), -LC(-), to, 2’1 = (u’(t)u(f)  + m[z ( t ) ] }  dt .  (5) 

(The superscript  prime  denotes  matrix  transposition.’) 
I t  is assunwd that m(s) is  nonnegative  for all x ,  that ? n ( O )  
= 0, and  that f(0) = 0. In  the sequel we shall a.lso require 
at times the following assumptions.? 

-4sszmptiun I :  The system  (4) is completely controllable; 
that is! for any  initial  state x(f,J and  any  other  state rl, 
thew exist$ a square-integrable  control u( .) and a time il 
such that x ( t J  = .zl. 

dssun~.ptiun 2: The functions f( .) and m(.) have 
sufficient properties  including  smoothncss  such  that  an 
optimal  control  exists. and  that  thc  optimal performance 
index  satisfies the Hamilton-Jacobi  equation. 

loT 

A4sszmptiun 3: The  free  s?-strnl 

i ( t )  = .t’[.?(t) ] y ( t j  = I T 1  [.r(f)] 

is  completely  obserrable!  in the sense that  .~n[x(t)] = 0, 
for all t E ( f l , t2)  with ti and t2 a r b i t r q - .  implies r(t) = 0. 
=Ilso ? I ) (  .) is such  that  the  optimal performance index 
approaclm infinity as iI.r(t,) / I  approaches  infinity. 

Under ,&.sumption 2 .  the  optimal  feedback  control law- 
is seen from the  standard  Hamilton-Jacobi  theor?- t o  be 

minor  smoothness  assumptions,  be assumed dependent on x. Further, 
1 The  matrix G, though assumed constant  here, may, with wly 

the tern1 u ’ ( t i u ( f )  in (..?) can be weighted by npositive definite  snlooth 
function of x with  minor  adjustment to  later  arguments. 

wm1ld be  reasonable to restrict  them to local regions in which the 
Although  these as~lmptions  are written  in global terms, it 

state \\-as known to lie on n priori grounds. 
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U* = -$G’V+(x,t,T) (6)  

where +(x,t?T) is the solution of 

!%! + v’+j(z) - $v‘+GG’v$ + m(z) = 0 (7) 
dt 

with  boundary  conditions +(O,t,T) = 0 for all t E [to, TI 
’ and +(x,T,T)  = 0 for  all x. Moreover, 

+[z(b),fo,T] = inf V[z ( to ) ,   u ( . ) , t o ,T] .  
u ( . )  

Of special int.erest  is the case T = m in ( 5 ) .  
Theorem I :  With  Assumptions 1 and 2 holding, the 

optimal performa.nce  index  when T = a is given  by 

and  the optima,l cont,rol is given  by (6 ) ,  with +(x,t ,T) 
repla,ced by $(x). Moreover, $(x) sat.isfies (7). 

Proof: Following arguments as for the linear-quad- 
ratic problem, due t o  Kalman, see [I, p. 331 and [ 5 ] ,  
monot,onicit; of +(z,t,T) as  a  function of T with fixed z 
and t can  be shown. and  the boundedness for all T follows 
from Assumpt.ion 1. Consequently the limit. on  t,he  right 
side of (8) ex&, and is easily checked t o  be  independent. of 
t .  That, $(x> is  in fact. the opt.inlal performance  index is 
easily est>ablished,  as  in [l ,  pp. 34, 3.51 and [5] .  i. 

The corresponding resu1t.s for nonzero t.ern1ina.l wight- 
ing are considerably  more difficult t,o  obtain,  although  it 
is clear that  one other  sit.uat,ion  for n-hich Theorem 1 
remains true is if a termina.1 n-eight.ing n [ r ( T ) ]  added on 
to  the  right side of ( 5 )  is a  steady-state  solution of (7). 
[The  boundary  condition +(z,T,T) = 0 is replaced by 
+(z,T,T) = n [ z ( T ) ]  = $ ( x ) . ]  However, the presence of 
n ( x )  is  irrelevant. if t.hc  optimal  solution  in  Theorem 1 
leads to   an as;mpt.oticallg stable  system. Sufficient con- 
ditions for t.his to  be  t.rue  are  given  in  the following 
theorem. 

Theorem 2: Under t.he conditions of Theorem 1: t.0- 
gether  with  Assumption 3, t.he  optimal closed-loop syst.em 
is globally asgnlptot.ically  stable. 

Proof: The proof precisely parallels  t,hat.  used for the 
linear-quadratic  problem [l:  p. 411 a.nd [.I. For  from (6) 
and (7), ‘the  rate of change of 4(.z(t)) along an; opt,imal 
traject,ory  is given by 

- 

probably easier in most cases tlo check for controllability 
by  simple  inspection  (perhapa,  in  a  given  example,  from 
physical  reasoning),  while the observability  requirement 
may  be  circumvented, if necessary, by  making 172(x) 

positive definite. 

111. THE RETURK DIFFEREKCE COXDITIOIV 

In  the remainder of this  paper, we shall be  concerned 
with  feedback  control  1a.m for the syst.em (4) witch a 
property to  be described as the  return difference condit,ion 
(RDC). The reason for this  name is that, for  linmr s ~ s -  
tems, the condit,ion reduces to   the inequality (3). The 
precise st,atement of this condition is as follows. 

DeJinition.: rl function k(x) of t,he  state of the  system (4) 
is said t o  sat,isfy t,he RDC if, zcken.ezw x(&,) = 0, 

Lom [u + k ( z ) ] ’ [ u  + k(z) ] rlf 2 u’zc clt (9) Lrn 
for. all sqzme inteyrable u( .) such that x( a) = 0, tchere 
x( .) i s  the solution trajectory of (4). 

Sote  that   the inequality (9) is only required to  hold for 
zero init,ial states;  no  direct  condition is placed  on the 
response of (4) for  nonzero a(fo) ,  although of course the 
response in  t.his  case is implicitly  constra.ined  by  specifying 
the response  for x(to) = 0 and  arbitra.ry u(t). 

4s remarked  above,  in  the  linear  s>-stem case, (9) reduces 
to  (3) .  This is most. easily seen by  converting (9) to  a 
frequency  domain  inequality.  using  Parseval’s t.heorem, 
and  then  making use of the essentially arbitrary  nature of 
u(.). Note  that.  just  as (3) is  a condit.ion on the input.- 
output  behavior of a  plant,  and  independent,  therefore of 
initial  conditions, so is t.his truc of (9). 

One  can  construct.  physical  interprct,a,tions for (9). For 
example,  one  could  argue that (9) implies that  a  feedback 
law of -k(a) constitutes  a  negative  feedback  lau-  in a 
sense  somewhat  akin t o  t,hat of classical control:  with 
uext denot,ing a.n external  control  applied  to  thesyst.em (4), 
and  n-ith -k(x) simultaneously  a  feedback  control,  one 
has u e x t  = ZG + k ( ~ ) ~  and (9) implies that u( .) is smaller 
t.han ueXt(.) as  measured  bp a.n L2 norm. In  other words, 
t.he  feedback  cancels out. some of t.he a.pplied cont.rol. 

The  importance of thc RDC is phon-n in  thc follou-ing 
t,heorem. 

d4(z(t)) - V’$(x) [f(z) - $GG’V$(z)] 
Theorem 3: For  t,he  system ~- 

clt a(t) = f [ x ( t ) ]  + G u ( t )  (10) 
= - ? n ( ~ )  - $V“$(X)GG‘V$(X). 

the  asymptotically  st,able  control law 
Bssumpt,ion 3 then  implia  that  this  dericat,ive  can  never 
be  identically zero, so t*hat. +(x) is  a  Lyapunov  function 
for the  optimal syst.em [6, p. 661. E is  optimal  for  t.he  problem of minimizing, subject t o  

may  be  far  from  trivial;  a  considerable  amount of resea.rch 
is still  being  carried  out,  on the obserra,bilit,y  and con- 
t,rollabilit,y of nonlinear  systenx [i 1-[9]. In practice, it. is 

u(t) = - k [ . x ( f ) ]  (11) 

Kote, hon-ever, that verification of -4ssumpt.ions 1-3 1- lmT.+rn z ( T )  = Ot a  performance  index of the  form 

T 
~ { z ~ ,  u<.>j  = Em S, [nz(z> + u f u ]  c ~ t  (12) 

T-i 0 
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with m ( x )  nonnegat.ive  for all 1: if. and only if, k(s) sat.isfies stability  and  stationarity of the control Ian- u( t )  = 

t.he RDC. - k [ s ( t ) ] !  use of any u E CTT (for any T )  vi11 lead to  
Proof of Necessity: Suppose that, for  somr  nonnegative lim r(t) = 0, so that C.TT is  a  subset. of the class of cont.rols 

function m ( x ) ,  the control  law (11) has  been found t o  be an ‘-- 
optima.1 control  for the  system (10) that min im izes  (12). 

satisfies (i). which  may be  rewitten  as 

for which (9) holds. Consequently, 

and  that B(x) is  the associated  minimum. Then 6 ( x )  ICT 
r n ( ~ )  = $V’~(X)GG‘VB(.E) - V ’ ~ ( X ) ~ ( X ) .  

Kon- for any u(.), not necessa.rily optimal,  but  for n-hich 
1imt+- r(t) = 0, n-e have 

[~z(x) + U ‘ U ]  dt = Im [tv’BGG’V$ - V ‘ ~ ( . T )  

+ u‘21 ] dt 

= Jm { (u + $G‘V4)’(u + +G’V$) 
to 

2 s, u.’u dt.  
T 

Sote,  incidentally, that  the  above lemma  requires  no 
direct  restriction on s ( T ) .  I t  obviously is of independent 
interest, since it. ma.l<cs more solid the physical interpreta- 
tion of the  RDC given  earlier. 

Son- let  us  introduce,  in  preparation for completing the 
proof of Theorem 3: the feedback  system 

i = f(~) - +GX-(X) + G u ~  = f ( ~ )  + G [ u ~  - $ k ( r ) ] .  (14) 

The  relation betn-een (4) and (11) resulting  in  both sys- 
t.ems having the  same  trajectory x(.) is u = ul - +S(z). 
Condition (13) then  maps  into  the following passivity 
condition. for (14). Whenever z(to) = 0 and u l (  .) is  square 
integrable 

where the second line is obt.a.ined by  using the  identit>- (1;s) 
d 
- [B(z( t ) ) ]  = V’$~(X) + V‘BGU. 
dt for all T 2 to.  

Recalling  from  Theorem 1 that k(x) 
zcchenerer x([,,) = 0 and x (  a) = o? 
lorn (21 + k(x))’(u + k(.E)) clf 

= +G’V$.  we obtain 

for.  all u(.), where x (  .) is the solution trajectory of (4). 
This completes the proof that  the  RDC is neccssa.rily 

satisfied by an optimal  system.  The converse, namrly.  that 
satisfaction of the condition  implies the existence of a 
nonnegative  function m ( - )  in (12) such that (11) is opti- 
mal. is rather  more difficult t o  prove, a.nd it will first. be 
necessary to  establish  some  preliminary  results  conccrning 
properties of system? for which the  RDC is satisfied. 
To begin v-it h: it will be necessary to  hare a finite-time 
version of the RDC. 

Lemma 1: If k ( s )  is such  t,hat  the  RDC holds and  such 
that ~ ( t )  = -k[ .x( t )]  makes (IO) asymptotically  stable. 
then, whenever s ( t0 )  = 0, the inequajity 

la [ u  + k(z)]’[u + k ( r ) ]  clt 2 zi’u dt  (13) 

holds  for all T 2 to :  and all square-integrable ~ ( f ) ,  where 
x(.) is the solution  trajectory of (4). 

T loT 
Proof: For  any T 2 to, consider the class of controls 

There is no  restriction on ~(2‘ ) .  By the assumed asympt,otic 

The reason  for  describing (1.5) as  a  passivity  condition  is 
a-s follom. Consider the  system (14) 1xit.h input u 1  and 
nith  output yl = k ( x ) .  Then, thinl&g of u 1  as, say, a 
volta.ge a.nd y1 as a Current., (15) is the condition  that,  the 
system  be passive, i.e.. that  xhen initially  unexcited. it  
acts as an  rnergy  sink.  Passivit>- has provrd an  important 
concept in, for cxamplc. stability  theory of control  systems. 
see, e.$.. [IO], and WP shall rcturn t o  this  in  Section T-. 

Inequalit>- (15) has a natural  and  important  rxtension 
to  cope with  the  case of a nonzero  initial statcl, given in 
Lemma 2. -4 version of this  lcmma  for  the  linear-quadratic 
case  appears  in [Ill.  \\-here conncctions  with  optimal 
control a.nd stability  arc  noted.  For  our purposes though, 
Lemma 2 is simply a tool for proving the sufficiency 
statement of Throrcm 8. 

This  inequality  can  be  extended t o  cope x-ith  the case of 
a nonzrro initial  &ate in the follox<ng  way. 

Lem:ma 8: Suppose that  the  function k ( x )  and  the  system 
(4) arc  such  tha.t  the RDC is  satisfied.  Then  for the  system 
(Id) with  arbit.rary  initial  state z(0) = 20, there exists a 
number C(x0)  such  tha.t for any E 2 0 and a.ny cont.ro1 
ul(-)€L,[O!Tl, 

T 
(2ul fk(z)  + E ul’ul) dt 2 -C(xo). (16) 

Proof: Take t o  t o  be sufficiently negative  that for 
arbit,rary zo! t,here  exists  by the  controllability of (4) and 
t.herefore (14) a  control ul( .)  defined  over [to.O] such  that, 
with r(k) = 0: there  results z(0) = 20. Let u l ( . )  be  arbi- 
t.rary  over [O,T] ; (1.5) holds  for all T 2 0, whence 
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SOT 2u1‘k(x) dt 2. - 2241’k(x) dt. lo0 

SOT 2u1’k(x) dt 2 -C(x,) 

The right.  side of this  inequalit,y is independent of ul( e )  

over [O,T], so that it is possible to  find a  function C(x0) of 
zo such  tha,t 

where x(0) = xo, a,nd T  is  arbit.rary. Since eu1’u1 is always 
positive,  t,he  required  result follows. E 

IT. SOLTTITOS OF THE INVEKSE  PROBLEM 

In this section, we shall pose an  optimal  control  problem 
for  the  system (14). By  examining a. limiting  form of the 
solut,ion of t.his problem,  we  shall  recover  functions m( .) 
and n( e ) ,  which yield a const,ructive proof of the remainder 
of Theorem 3. 

Consider the  system (14), with  performance  index 

V[X,,U~(.),T,E] = [2ul’k(z) + E ~1 ’~ .1 ]  clt, E > 0. 
SOT 

(17) 

Assume there is sufEcient  smoothness t o  apply  the  Hamil- 
ton-Jacobi  theory.  Then,  using the  bound (16), one ca,n 
conclude  t.he  existence of an optimal  control  law uI*( -) 
a.nd associated  performa.nce  index 

V[ZO,U~*,T,E] = -+,(zo,O,T) 2. 0 

where the minus sign is a not.ationa1 covenience, and 
+E(. , -, .) satisfies t.he  Hamilton-Jacobi  equation  with 
appropriate bounda.ry  conditions. Next., one  can  argue  tha.t 
+ c  is monotone  increasing  wit,h  T and bounded, a.nd 
accordingly,  existence is guaxant.eed of 

$€(x) = lim +€(x,t ,T) 5 0. 

Furt.her, following arguments  like  those of Theorem 1, 
$,( .) satisfies t.he  limiting  Hamilton-Jacobi  equation 

T - m  

V ’ $ , [ ~ ( Z )  - + G ~ ( s ) ]  + E-’[~c(x) - $G’V+,]’ 
. [ k ( ~ )  - +G’V$,] = 0. (18) 

Define 

m , ( ~ )  = -V‘+6[f(x) - +Gk(x)].  (19) 

From  (lS), we see that m,(x) 2 0 for a.ll x. 

w-ith E ,  a.nd bounded.  Accordingly, there  exists 
Next,  one  can  show  that +,(x) is  monotonic  increasing 

$(x) = lin14e(x) 2. 0 (20) 

and,  assuming3  lime_t0 V+,(x) = V [lim,,o &(x) ]  = V$(x ) ,  

that &(x) is analytic  in e, and  t,hat  the assumpt.ion of sufficient 
The full significance of this condition escapes us. It. would seem 

smoothness  on f(. ) and .nz(. ) aould imply smoothnm of &(x) as a 

seems harder  to provide for, via conditions on f( . ), etc. 
funct,ion of 2. But t.he joint smoothness in E and x necessary here 

e-0 

-V’$(x) If(s) - +Gk(x)]  = G(x) = lim m,(s) 2. 0. (21) 

Let.ting E - 0 in (lS), we also obta.in 

e-0 

k(x)  = +G’V$(x). (22) 

The foregoing results will now  be  used t.0 complete the 
proof of Theorem 3. Specifically, it. will be shown that, if 
k(x)  is chosen  such that.  RDC  is satisfied, then  there 
exist.s a nonnegat,ive  function m(x) in (12) such that khe 
control  law (11) is  optimal. 

Proof of Theorem 3 (continued): The necessity  part, of 
t,he proof has  already been out.lined. To show that,  the 
RDC is sufficient for  optimality, we proceed as follows. 

Using the t.echnique outlined  above, we construct  the 
nonnegative  functions G(x)  and $(x). Recall that  

G(z) = -V’$(X) If(.) - +Gk(x) ]  

and 

$G’V$(x) = k(x). 

Now  consider t,he following finite  performance  index 
associated mit,h (10) : 

V[x(td,u(.),t~,TI = $ [ z ( T ) l  + [u’u + m(x)I  c k  
T 

(23) 

The  optimal  perfornlance  index  is  obtained  via the 
Hamilton-Jacobi  theory  as  the  solution of 

!!!! + v’+f(z) - $v’+GG’v4 - V’$f(x) + $V‘$GG‘v& = 0 
dt 

with  the  boundary  conditions 

It, is clear that 4(x,t,T) = &(x) is  one  solution of this 
equat,ion, a.nd t.he  smoothness  assumptions  imposed so far 
imply that it, is the  unique solut,ion. Letting T approach 
infinity  in  (23),  and  using the a.sympt.otic stabi1it.y of the 
contx-ol law u( t )  = - k [x ( t ) ] ,  it follon-s tha.t  with m(x) = 
&(x) in  (12),  t,he  nlinimum  value of (12) is 

+(x) = lim $(x) = $(x) 
T- c? 

and obviously &(x) is  the  optimal  performance index. 
That  t,he  optimal  control  is u = - k (x )  now follows im- 
media.tely from (22). 0 

TT. PROPERTIES OF OPTIMAL SYSTENS 

A key  development in the preceding proof was the 
observation  t,hat. (14)  represent,s  a  passive  system. It is 
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possible to  extend  this  result  further,  as shown in  the VI. COSCLUSIOW 
follon-ing lemma. 

linearity  such  that 
Lemma. 3: Let #( . , t )  be  any  time-varying  gain or non- 

#(O,t)  = 0, for all t. 

Then if x(!) is a  solution of 

where 

then  the RDC implies t,hat, 

for all T 2 to? and  any  square-integrable uext( .). 
Proof: The proof  follows directly from the  inequality 

(13). n 

Since the conditions (24) include the special case 
# ( ~ , t )  = U, Lemma 3 shows that  an  optimal  s>-stem is 
always  passive in  the sense  defined  above. Howevrr. it also 
shom  that, t.he  system  remains passive  when  a  wide ra.nge 
of nonlinearities  is  introduced into  the feedback loop. 

3 

If condition (24) is  strengt.hened slight.ly t o  

In  this  paper  an  attempt  has been made to  isolate  those 
properties of a  control  systrm  that  are  linked  to  a  certain 
type of optimality,  and  it  has been  shown that a return 
difference condition, closely related t o  loop gain  concepts 
in  linear  systems,  provides  a  criterion  for deciding the 
optimality or otherwise of a  feedback  law. 

It. should  be  noted  that  although  the proof of optinlality 
of a  control  law as gicen  here is a  constructive  one,  it does 
not normally  lead t o  computational1;v attractive  construc- 
t.ion procedures. Also, only  one of the man>-  performance 
indices for which the control  law is optimal  has been pre- 
sented.  Bn  example  where  the  procedure  can  be  reasonably 
used to  const.ruct the performance  index  is  in the case of a 
1inea.r system ni th  linear  feedback. This case is! of course, 
included  in the present  results. 

It is vital  to  the  results of this  paper  that  the  control 
appear  quadraticall>-  in  the  performance  index; if a more 
general class of loss functions  is considered, properties  such 
as  stability  and t.olerance of input  nonlinearities  could  no 
longer,  in general, be  guaranteed.  (In  particular,  the 
inclusion of cross products  between  the  control  and  the 
states would allon- the  trivial  result,  apparently first noted 
in [ 2 ] ,  that any control lam- is  optimal.)  Obviously  our 
results estrnd  to  thc case \\-here in  the loss function, 
u’(t)u(t)  is  rrplaced  by u’(t)Ru(f), with R a  positive definit.e 
matrix; however, it is also interesting t o  speculatr, on the 
basis of the  rrsults  in [ E ] !  that  many of the  results of this 
paper  could br extended to   the case of a more grneral loss 
function of the form r(u) + m(.r)? n-ith sonw positivity 
constraint  on ~ ( u ) .  
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Absfracf-Most econometric models  have  many  versions which 
differ from  one  another by 1) minor  variations in the speciiication, 
or 2) choice of parameter estimator. This paper demonstrates how 
control theory  can  be employed to discriminate  between alternative 
versions of an econometric model. For many policy problems in- 
volving a simple  objective  function and a single  control  variable, the 
investigator can hypothesize from  the  tenets of a given economic 
theory  qualitative  characteristics of the optimal economic behavior. 
By computing the optimal economic policy, the investigator can 
determine which versions  are  consistent with the hypothesis. This 
procedure was employed to determine which versions of a revised 
form of the Klein-Goldberger model are consistent with three 
hypotheses  derived from economic theory. For  the  first two hy- 
potheses, the  results indicate that consistency depends on the choice 
of parameter estimates.  For the  thud hypothesis, an inflation test  at 
full employment, the  results indicate that all versions are inconsis- 
tent with the hypothesis. 
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T 
I. INTRODUCTION 

HE alternat,ive  versions of an econometric  model ca.n 
be  thought. of as a. set whose  members differ from 

one  another by variations  in  the model specification or 
choice of paramet.er  estimator.  One of the more difficult, 
problenls in econometric  model  const.ruction is determining 
which  member of t.he  set  best  rcprrsents the  actual econ- 
only [3]. As t,he t.ime interval  between economic obserw- 
tions is long, the possibility of quickly determining  the 
best. member solely on the basis of predictive capacit5- is 
remote. As a  consequence, t,ests d i c h  can discern  defrct.s 
in  an  econometric  model  in t,he absence o f  forecast data 
a,re important.  in economet.ric  model eduat ion .  

One  category of such  procedures  is  t.ests  based  on con- 
fronting  the model n-it.h a priori  information. In  developing 
an  econometric model, the econometrician specifies the 
form of the model  on the basis of economic theory.  Esti- 
mates of the  parameters  are  thrn  determined by a statis- 
ticaI estimation  procedure. But: as certain typcls of a 
pl*io~.i information  are  verJ- difficult to  incorporatr  directly 
into  the specification or estimation process! the ccono- 
metrician  uses  such  information t.o evaluatc the model 
after  the  estimates of the unknown  parameters have been 


