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Nonlinear Regulator Theory and an Inverse
Optimal Control Problem

PETER J. MOYLAXN axp BRIAN D. 0. ANDERSOXN

Abstract—Nonlinear optimal regulators are discussed, and some
useful properties are isolated. An inverse problem of nonlinear
regulator design is posed and solved.

I. INTRODUCTION

STRONG motivation for designing optimal systems

is that such systems tend automatically to have
properties that are desirable from the viewpoint of
classical criteria: stability, reduced sensitivity to param-
eter variations, and many other such properties. In par-
ticular, it is well-known [1] that if the linear time-invariant
single-input system

% = Fax + gu (1)

is optimized with respect to the performance index

f (u? + z'Qx) dt 2)
to

then, under mild restrictions on &, the resulting feedback
system is a “‘good” system by most classical eriteria. An
equally significant result is as follows [2]. Given a feedback
control law u = —k‘z for the system (1), which is known
to vield an asvmptotically stable closed-loop system, then
a necessary and sufficient condition for this control law
to be optimal with respect to a performance index of the
type (2) is that

1+ K (jol — F)~ig[> 1 ()

hold for all real w. This is the so-called “return difference
condition,” well known in classical control theory as a
desirable condition on a linear feedback control syvstem.
The purpose of the present paper is to present correspond-
ing results for a class of nonlinear systems. We restriet our-
selves to time-invariant svstems, most frequently with
time-invariant control laws. With greater notational com-
plexity and with many more ad hoe assumptions, princi-
pally in respect to existence of double limits, time-varying
systems may be considered, and obvious generalizations of
the time-invariant results will be obtained.

We do not, however, restrict consideration to single-
input syvstems. Other results on nonlinear inverse optimal
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control problems can be found in [3] and [4]. In [3], more
general performance indices are considered than those of
this paper (which are quadratic in the control, but not
necessarily the state), but on the other hand, the main
results are restricted to systems possessing an optimal
performance that is quadratic in the state. In [4], some
structural properties are determined for the optimum con-
trol law of a problem of the elass considered in this paper.

1I. SoruTioN oF THE DIRECT PROBLEM
Consider the system
(@) = flx@®] + Gu(?) 1))

where z and u are, respectively, the system state and con-
trol and take as a performance index

T
Vie@o), u(-), b, T] = j: {u’(t)u(t) + m[a:(t)]} di.  (5)

(The superseript prime denotes matrix transposition.?)
It is assumed that m(x) is nonnegative for all 2; that m(0)
= (, and that f(0) = 0. In the sequcl we shall also require
at times the following assumptions.?

Assumption 1: The system (4) is completely controllable;
that is, for any initial state z(4) and any other state a,,
there exists a square-integrable control «(-) and a time &
such that z() = .

Assumption 2: The functions f(-) and m(-) have
sufficient properties including smoothness such that an
optimal control exists, and that the optimal performance
index satisfies the Hamilton-Jacobi equation.

Assumption 3: The free system

2O = rle@]  y@® = mlzx@®)]

is completely observable, in the sense that m{z(1)] = 0,
for all ¢ € (ti,t2) with #; and ¢, arbitrary, implies 2(f) = 0.
Also m(-) is such that the optimal performance index
approaches infinity as i'l(to)'l approaches infinity.
Under Assumption 2, the optimal feedback control law
is seen from the standard Hamilton-Jacobi theory to be

' The matrix G, though asswmed constant here, may, with very
minor smoothness assumptions, be assumed dependent on x. Further,
the term «'({)u(t) in (5) can be weighted by a positive definite smooth
function of r with minor adjustment to later arguments.

® Although these assumptions are written in global terms, it
would be reasonable to restriet them to local regions in which the
state was known to lie on a priori grounds.
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u* = —3G'Vo(x,t,T) (6)

where ¢(z,t,T) is the solution of
‘3—‘? F Vi) — W06V +mix) =0 (7)

with boundary conditions ¢(0,;,T7) = 0 for all ¢ € [t, T']
and ¢(z,T,T) = 0{or all z. Moreover,

¢[I(l(o),t0,T] = inf ‘/[x(tﬂ)) ’Lt('),to,T].
u(-)

Of special interest is the case T = o« in ().

Theorem 1: With Assumptions 1 and 2 holding, the
optimal performance index when T = < is given by

¢(x) = im ¢(z,1,T) (8)
T .
and the optimal control is given by (6), with ¢(z,t,T)
replaced by &(z). Moreover, ¢(x) satisfies (7).

Proof: Following arguments as for the linear-quad-
ratic problem, due to Kalman, see [1, p. 33] and [5],
monotonicity of ¢(x,t,T) as a function of 7 with fixed «
and ¢ can be shown, and the boundedness for all T follows
from Assumption 1. Consequently the limit on the right
side of (8) exists, and is easily checked to be independent of
t. That ¢(z) is in fact the optimal performance index is
casily established, as in [1, pp. 34, 35] and [5]. il

The corresponding results for nonzero terminal weight-
ing are considerably more difficult to obtain, although it
is clear that one other situation for which Theorem 1
remains true is if a terminal weighting n[2(7") ] added on
to the right side of (5) is a steady-state solution of (7).
[The boundary condition ¢(z,7,7) = 0 is replaced by
o, T,T) = nlx(T)] = &(x).] However, the presence of
n(z) is irrelevant if the optimal solution in Theorem 1
leads to an asymptotically stable system. Sufficient con-
ditions for this to be true are given in the following
theorem.

Theorem 2: Under the conditions of Theorem 1, to-
gether with Assumption 3, the optimal closed-loop system
is globally asymptotically stable.

Proof: The proof precisely parallels that used for the
linear-quadratic problem [1, p. 41] and [5]. For from (6)
and (7), the rate of change of ¢(x(f)) along any optimal
trajectory is given by

dg(z (1)
dt

V@) [f(x) — 3GG'VH(x)]

= —m) — V@)GCVE().

Assumption 3 then implies that this derivative can never
be identically zero, so that &(z) is a Lyapunov funection
for the optimal system [6, p. 66]. ]

Note, however, that verification of Assumptions 1-3
may be far from trivial; a considerable amount of research
is still being carried out on the observability and con-
trollability of nonlinear systems [7]-[9]. In practice, it is
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probably easier in most cases to check for controllability
by simple inspection (perhaps, in a given example, from
physical reasoning), while the observability requirement
may be circumvented, if necessary, by making m(z)
positive definite.

III. Tue RETURN DIirrERENCE CONDITION

In the remainder of this paper, we shall be concerned
with feedback control laws for the system (4) with a
property to be described as the return difference condition
(RDC). The reason for this name is that, for lincar sys-
tems, the condition reduces to the inequality (3). The
precise statement of this eondition is as follows.

Definition: A function k(z) of the state of the system (4)
is said to satisfy the RDC if, whenever z(t;) = 0,

EY

fm [+ k@) u + k@) d > f w'u di (9)
fo to

for all square integrable u(-) such that x(=) = 0, where
x() s the solution trajectory of (4).

XNote that the inequality (9) is only required to hold for
zero initial states; no direet condition is placed on the
response of (4) for nonzero z(f), although of course the
response in this case is implicitly constrained by specifying
the response for z(t) = 0 and arbitrary u(f).

Asremarked above, in the linear system case, (9) reduces
to (3). This is most casily seen by converting (9) to a
frequency domain inequality, using Parseval’s theorem,
and then making usc of the essentially arbitrary naturc of
u(+). Note that just as (3) is a condition on the input—
output behavior of a plant, and independent therefore of
initial conditions, so is this true of (9).

One can construet physical interpretations for (9). For
example, one could argue that (9) implies that a feedback
law of —k(2) constitutes a negative feedback law in a
sense somewhat akin to that of classical control: with
Uexs denoting an external control applied to the system (4),
and with —k(z) simultaneously a feedback control, one
has wexy = 4 + k(z), and (9) implies that «(-) is smaller
than uexi(+) as measured by an L, norm. In other words,
the feedback cancels out some of the applied control.

The importance of the RDC is shown in the following
theorem,

Theorem 3: For the system

2 = flz@®] + Gu(®) (10)
the asymptotically stable control law
u(t) = —klz(®] (11)

is optimal for the problem of minimizing, subject to
limy_,, z(T) = 0, a performance index of the form

T

V{:co, u(H} = ;1_12) [m(x) + w'u] dt (12)
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with m(x) nonnegative for all x if, and only if, k(x) satisfies
the RDC.

Proof of Necessity: Suppose that, for some nonnegative
function m(x), the control law (11) has been found to be an
optimal control for the system (10) that minimizes (12).
and that @(x) is the associated minimum. Then é(x)
satisfies (7). which may be rewritten as

mx) = 1V'8(@)GGE'VH(x) — Vg(x)f(x).
Now for any u(-), 7ot necessarily optimal, but for which
lim,,o z(&} = 0, we have

J;,m [m(x) + w'u] dt = f

to

@

BV/ECEVE — V'6/()
+ wiu] dt
_ L {<u+ 16'VE) (u + 3G'VE)

d 1
~ [¢(x(i-))]f dt

= Be() + f " + 36'73)

- (u 4+ 1G'Ve) dt
where the second line is obtained by using the identity
d _ . -
7 [6=(®)] = V'éf(x) + V'éGu.

Recalling from Theorem 1 that k(x) =
whenever x(ty)) = 0 and (=) = 0,

fm w + k@) (u + k(;p)) di > fm w'u dt

0

1G'Vé, we obtain

for all u(-), where x(-) is the solution trajectory of (1). 1

This completes the proof that the RDC is necessarily
satisfied by an optimal svstem, The converse, namely, that
satisfaction of the condition implies the existence of a
nonnegative funetion m(-) in (12) such that (11) is opti-
mal, is rather more difficult to prove, and it will first be
necessary to establish some preliminary results concerning
properties of svstems for which the RDC is satisfied.
To begin with, it will be necessary to have a finite-time
version of the RDC.

Lemma 1: If k() is such that the RDC holds and such
that «(t) = —Xk[x()] makes (10) asvmptotically stable,
then, whenever 2(,) = 0, the inequality

T
j; w4+ k@] v+ k@) d > f

to
holds for all T > {4, and all square-integrable u(t), where
z(-) is the solution trajectory of (4).
Proof: For any T > 1, consider the class of controls

T

wu dt (13)

vr={ui [ wiu ai< =,
to

u(®) = —k[z@®], XL > T}.

There is no restriction on (7"). By the assumed asymptotic
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stability and stationarity of the control law u({) =
—k[z()], use of any u € Uy (for any T) will lead to
lim z(f) = 0, so that Uy is a subset of the class of controls

{—x

for which (9) holds. Congequently,

T -
f [u + k@) ]u+ k)] di > f w' dt

te to

T
> f u'u di.
fo

Note, incidentally, that the above lemma requires no
direct restriction on 2(7T). It obviously is of independent
interest, since it malkes more solid the physical interpreta-
tion of the RDC given carlier.

Now let us introduce, in preparation for completing the
proof of Theorem 3, the feedback system

& = flx) — 3Gk@) + Gu = f(&) + Glu — 3k(@)]. (1)

The relation between (4) and (14) resulting in both sys-
tems having the same trajectory z(:) is v = w; — Ik(z).
Condition (13) then maps into the following passivity
condition for (14). Whenever z(f) = 0 and u,(-) is square
integrable

T
f k) dt >0 (13)
o

forall T > .

The reason for deseribing (15) as a passivity condition is
as follows. Consider the system (14) with input »; and
with output y = k(x). Then, thinking of u; as, say, a
voltage and ¥; as a current, (15) is the condition that the
system be passive, i.e., that when initially unexeited, it
acts as an energy sink. Passivity has proved an important
concept in, for example, stability theory of control systems,
see, e.g., [10], and we shall return to this in Seetion V.

Inequality (15) has a natural and important extension
to cope with the case of a nonzero initial state, given in
Lemma 2. A version of this lemma for the linear-quadratic
case appears in [11], where connections with optimal
control and stability are noted. For our purposes though,
Lemma 2 1s simply a tool for proving the sufficiency
statement of Theorem 3.

This inequality can be extended to cope with the case of
a nonzero initial state in the following way.

Lemma 2: Suppose that the function k{x) and the system
(4) are such that the RDC is satisfied. Then for the system
(14) with arbitrary initial state z(0) = =z, there exists a
number C(zy) such that for any ¢ > 0 and any control
u1(~)EL2[O,T],

T
fo Qui'k(x) + e wy'wy) dt > —C{xo). (16)
Proof: Take #, to be sufficiently negative that for
arbitrary z,, there exists by the controllability of (4) and
therefore (14) a control w;(-) defined over [4,0] such that
with z(f) = 0, there results x(0) = . Let u;(-) be arbi-
trary over [0,7']; (15) holds for all T > 0, whence
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T 0
f 2u'k(x) dt > — f 2w, k() dt.
0 4

The right side of this inequality is independent of ;(-)
over [0,T], so that it is possible to find a function C(z,) of
Zo such that

fT 2u'k(z) di > —Clay)
0

where 2(0) = z,, and T is arbitrary. Since ew;'u, is always
positive, the required result follows. ]

IV. SoLuTiON OF THE INVERSE PROBLEM

In this section, we shall pose an optimal control problem
for the system (14). By examining a limiting form of the
solution of this problem, we shall recover funections m(-)
and n(-), which yield a econstruective proof of the remainder
of Theorem 3.

Consider the system (14), with performance index

T
Vi) Tl = [ Ru'k@ + cwtuld,  e>0
0

(17

Assume there is sufficient smoothness to apply the Hamil-
ton—Jacobi theory. Then, using the bound (16), onc can
conclude the existence of an optimal control law wu;*(-)
and associated performance index

V[xﬂyul*:T)E] = _¢e(x0)07T) Z 0

where the minus sign is a notational covenience, and
¢.(-,-,) satisfies the Hamilton—Jacobi equation with
appropriate boundary conditions. Next, one can argue that
¢. is monotone increasing with 7' and bounded, and
accordingly, existence is guaranteed of

$(x) =T11_{Il o (zt,T) < 0.
Further, following arguments like those of Theorem I,
é.(-) satisfies the limiting Hamilton-Jacobi equation
Vg lf(x) — 3Gk@)] + e '[k(z) — 5G'VS.]
- k(@) — 3G'Ve] = 0. (18)
Define
m(z) = —V'$.[f(zx) — 3Gk(@)].

From (18), we see that m (z) = 0 for all z.
Next, one can show that &.(z) is monotonic increasing
with ¢, and bounded. Accordingly, there exists

(@) = lim ¢.(x) > 0
e—0

(19)

(20)

and, assuming?® im, o Vé.(z) = V[lim, 4 ¢.(x)] = Vé(zx),

3 The full significance of this condition escapes us. It would seem
that ¢e(z) is analytic in ¢, and that the assumption of sufficient
smoothness on f(-) and m(-) would imply smoothness of @.(x) as a
function of z. But the joint smoothness in e and = necessary here
seems harder to provide for, via eonditions on f(- ), ete.
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~V'$@)[f(x) — 3Gk(z)] = m(z) = lin(r)l mJ(z) 2 0. (21)

Letting € = 0 in (18), we also obtain

k(z) = 3G'Vo(x). (22)

The foregoing results will now be used to complete the
proof of Theorem 3. Specifically, it will be shown that, if
k(x) is chosen such that RDC is satisfied, then there
exists a nonnegative function m(z) in (12) such that the
control law (11) is optimal.

Proof of Theorem 3 (continued): The necessity part of
the proof has already been outlined. To show that the
RDC is sufficient for optimality, we proceed as follows.

Using the technique outlined above, we construet the
nonnegative functions m(z) and ¢(z). Recall that

m(x) = —V'¢@)[fx) — 3Gk(z)]
and
1G'Vé(z) = k().

Now consider the following finite performance index
associated with (10):

T
Viz(to),u(-),t,T] = $lx(T)] + j: [w'u 4+ m(x)] dt.

(23)

The optimal performance index is obtained via the
Hamilton—Jacobi theory as the solution of

15] . N .
2t V'4@) — 1V6G6T9 — V/gf(@) + 1V'666'V4 = 0

with the boundary conditions

¢(z,T,T)
¢(0,4,T)

It is clear that ¢(z,(,7) = &(z) is one solution of this
equation, and the smoothness assumptions imposed so far
imply that it is the unique solution. Letting 7' approach
infinity in (23), and using the asymptotic stability of the
control law u(t) = —kfz(f)], it follows that with m(z) =
m(z) in (12), the minimum value of (12) is

$(x)
0.

é(x) = Jim ¢(z) = #(z)

and obviously #(x) is the optimal performance index.
That the optimal control is © = —k({z) now follows im-
mediately from (22). ]

V. ProPERTIES OF OPTIMAL SYSTEMS

A key development in the preceding proof was the
observation that (14) represents a passive system. It is
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possible to extend this result further, as shown in the
following lemma.
Lemma 3: Let ¢(-,f) be any time-varyving gain or non-
linearity such that
¢(0,8) = 0, for all ¢

o'Plot) = %o'0, for all o,t. 24)
Then if z(f) is a solution of

() = fla@®] + Gu(®), z(t) =0
where

ul) = texit) — VR[] 8

then the RDC implies that
T
f QUexi k(x) dt > 0
to

for all T’ > ¢, and any square-integrable sex: ().
Proof: The proof follows directly from the inequality

(13). r
Since the conditions (24) include the special case
Y(e,l) = ¢, Lemma 3 shows that an optimal svstem is

always passive in the sense defined above. However, it also
shows that the svstem remains passive when a wide range
of nonlinearities is introduced into the feedback loop.

If condition (24) is strengthened slightly to

1
+ e)o’c < o'Ylot) £ —o'o

€

—~
Nl

for some positive constants ¢ and e, then the closed-loop
system obtained by setting 4 = —:,l/{k[x(t)],t} is also
(Lyvapunov) asymptotically stable. The proof, using
$[x ()] as a Lyapunov function, may be found in {12]. (A
partial result also appears in [3].) Since the closed-loop
syvstem corresponds to setting #ex¢(f) == 0 in Lemma 3. the
stability is simply Lyapunov stability of a passive syvstem,
which is to be expected as a consequence of the passivity
property.

In the linear quadratic problem, it is well known that the
RDC implies that the optimal closed-loop system ex-
hibits a lower sensitivity to parameter variation than the
equivalent open-loop system, sce. e.g., [1]. The analogous
result here is more complicated. This sensitivity improve-
ment follows in case H,, > 0, where H is the Hamiltonian
of the system, see [14]; for nonlinear f(z), this condition is
awkward, involving the costate vector. However, for
linear f(x) = Fuz, it becomes m,, > 0, and the sensitivity
improvement can be thought of as resulting via a small-
signal, or linearized, version of the RDC.
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VI. CoxcLusions

In this paper an attempt has been made to isolate those
properties of a control system that are linked to a certain
type of optimality, and it has been shown that a return
difference condition, closely related to loop gain concepts
in linear systems, provides a criterion for deciding the
optimality or otherwise of a feedback law.

It should be noted that although the proof of optimality
of a control law as given here is a constructive one, it does
not normally lead to computationally attractive construe-
tion procedures. Also, only one of the many performance
indices for which the control law is optimal has been pre-
sented. An example where the procedure can be reasonably
used to construct the performance index is in the case of a
linear system with linear feedback. This case is, of course,
included in the present results.

It is vital to the results of this paper that the control
appear quadratically in the performance index; if a more
general class of loss functions is considered, properties such
as stability and tolerance of input nonlinearities could no
longer, in general, be guaranteed. (In particular, the
inclusion of cross products between the control and the
states would allow the trivial result, apparently first noted
in [2], that any control law is optimal.) Obviously our
results extend to the case where in the loss function,
w/ (Hu(t) is replaced by «’ () Ru(f), with R a positive definite
matrix; however, it is also interesting to speculate, on the
basis of the results in [12], that many of the results of this
paper could be extended to the case of a more general loss
function of the form r(u) + m(x), with some positivity
constraint on »(u).
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1. INTRODUCTION

HE alternative versions of an econometric model can

be thought of as a set whose members differ from
one another by variations in the model specification or
choice of parameter estimator. Onec of the more difficult
problems in econometric model construction is determining
which member of the set best represents the actual econ-
omy [3]. As the time interval between economic observa-
tions is long, the possibility of quickly determining the
best member solely on the basis of predictive capacity is
remote. As a consequence, tests which can discern defects
in an econometric model in the absence of forceast data
are important in econometrie model evaluation.

One category of such procedures is tests based on con-
fronting the model with a priori information. In developing
an econometric model, the econometrician specifies the
form of the model on the basis of ceonomic theory. Esti-
mates of the parameters are then determined by a statis-
tical estimation procedure. But, as certain types of a
priorz information are very difficult to incorporate directly
into the specification or estimation process, the econo-
metrician uses such information to evaluate the model
after the estimates of the unknown parameters have been



